具有非对称三维铰接瓦片的三维打印生物启发复合材料的抗弯曲性与方向有关。

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Richard J Nash, Yaning Li
{"title":"具有非对称三维铰接瓦片的三维打印生物启发复合材料的抗弯曲性与方向有关。","authors":"Richard J Nash, Yaning Li","doi":"10.1088/1748-3190/ad5ee7","DOIUrl":null,"url":null,"abstract":"<p><p>Inspired by the protective armors in nature, composites with asymmetric 3D articulated tiles attached to a soft layer are designed and fabricated via a multi-material 3D printer. The bending resistance of the new designs are characterized via three-point bending experiments. Bending rigidity, strength, and final deflection of the designs are quantified and compared when loaded in two different in-plane and two different out-of-plane directions. It is found that in general, the designs with articulated tiles show direction-dependent bending behaviors with significantly increased bending rigidity, strength, and deflection to final failure in certain loading directions, as is attributed to the asymmetric tile articulation (asymmetric about the mid-plane of tiles) and an interesting sliding-induced auxetic effect. Analytical, numerical, and experimental analyses are conducted to unveil the underlying mechanisms.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direction-dependent bending resistance of 3D printed bio-inspired composites with asymmetric 3D articulated tiles.\",\"authors\":\"Richard J Nash, Yaning Li\",\"doi\":\"10.1088/1748-3190/ad5ee7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inspired by the protective armors in nature, composites with asymmetric 3D articulated tiles attached to a soft layer are designed and fabricated via a multi-material 3D printer. The bending resistance of the new designs are characterized via three-point bending experiments. Bending rigidity, strength, and final deflection of the designs are quantified and compared when loaded in two different in-plane and two different out-of-plane directions. It is found that in general, the designs with articulated tiles show direction-dependent bending behaviors with significantly increased bending rigidity, strength, and deflection to final failure in certain loading directions, as is attributed to the asymmetric tile articulation (asymmetric about the mid-plane of tiles) and an interesting sliding-induced auxetic effect. Analytical, numerical, and experimental analyses are conducted to unveil the underlying mechanisms.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad5ee7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad5ee7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

受自然界防护盔甲的启发,我们设计并通过多材料三维打印机制造了软层上附有非对称三维铰接瓦片的复合材料。新设计的抗弯性通过三点弯曲实验进行了表征。在两个不同的平面内和两个不同的平面外方向加载时,对设计的弯曲刚度、强度和最终挠度进行量化和比较。研究发现,一般来说,带有铰接瓦片的设计会表现出与方向相关的弯曲行为,在某些加载方向上,弯曲刚度、强度和最终破坏时的挠度都会显著增加,这归因于非对称瓦片铰接(瓦片中平面的非对称)和有趣的滑动诱导辅助效应。通过分析、数值和实验分析,揭示了其中的内在机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direction-dependent bending resistance of 3D printed bio-inspired composites with asymmetric 3D articulated tiles.

Inspired by the protective armors in nature, composites with asymmetric 3D articulated tiles attached to a soft layer are designed and fabricated via a multi-material 3D printer. The bending resistance of the new designs are characterized via three-point bending experiments. Bending rigidity, strength, and final deflection of the designs are quantified and compared when loaded in two different in-plane and two different out-of-plane directions. It is found that in general, the designs with articulated tiles show direction-dependent bending behaviors with significantly increased bending rigidity, strength, and deflection to final failure in certain loading directions, as is attributed to the asymmetric tile articulation (asymmetric about the mid-plane of tiles) and an interesting sliding-induced auxetic effect. Analytical, numerical, and experimental analyses are conducted to unveil the underlying mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信