Ting Xia, Parisa Torkinejad-Ziarati, Simon Kudernatsch, Donald R Peterson
{"title":"使用外骨骼对人体对模拟高空振动任务的反应的影响。","authors":"Ting Xia, Parisa Torkinejad-Ziarati, Simon Kudernatsch, Donald R Peterson","doi":"10.1080/00140139.2024.2372003","DOIUrl":null,"url":null,"abstract":"<p><p>The use of occupational exoskeletons has grown fast in manufacturing industries in recent years. One major scenario of exoskeleton use in manufacturing is to assist overhead, power hand tool operations. This preliminary work aimed to determine the effects of arm-supporting exoskeletons on shoulder muscle activity and human-hand tool coupling in simulated overhead tasks with axially applied vibration. An electromagnetic shaker capable of producing the random vibration spectrum specified in ISO 10819 was hung overhead to deliver vibrations. Two passive, arm-supporting exoskeletons, with one (ExoVest) transferring load to both the shoulder and pelvic region while the second one (ExoStrap) transferring load primarily to the pelvic region, were used in testing. Testing was also done with the shaker placed in front of the body to better understand the posture and exoskeleton engagement effects. The results collected from 6 healthy male subjects demonstrate the dominating effects of the overhead working posture on increased shoulder muscle activities. Vibration led to higher muscle activities in both agonist and antagonist shoulder muscles to a less extent. Exoskeleton use reduced the anterior deltoid and serratus anterior activities by 27% to 43%. However, wearing the ExoStrap increased the upper trapezius activities by 23% to 38% in the overhead posture. Furthermore, an increased human-shaker handle coupling was observed in the OH posture when wearing the ExoVest, indicating a more demanding neuromuscular control.</p>","PeriodicalId":50503,"journal":{"name":"Ergonomics","volume":" ","pages":"2112-2125"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of exoskeleton use on human response to simulated overhead tasks with vibration.\",\"authors\":\"Ting Xia, Parisa Torkinejad-Ziarati, Simon Kudernatsch, Donald R Peterson\",\"doi\":\"10.1080/00140139.2024.2372003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of occupational exoskeletons has grown fast in manufacturing industries in recent years. One major scenario of exoskeleton use in manufacturing is to assist overhead, power hand tool operations. This preliminary work aimed to determine the effects of arm-supporting exoskeletons on shoulder muscle activity and human-hand tool coupling in simulated overhead tasks with axially applied vibration. An electromagnetic shaker capable of producing the random vibration spectrum specified in ISO 10819 was hung overhead to deliver vibrations. Two passive, arm-supporting exoskeletons, with one (ExoVest) transferring load to both the shoulder and pelvic region while the second one (ExoStrap) transferring load primarily to the pelvic region, were used in testing. Testing was also done with the shaker placed in front of the body to better understand the posture and exoskeleton engagement effects. The results collected from 6 healthy male subjects demonstrate the dominating effects of the overhead working posture on increased shoulder muscle activities. Vibration led to higher muscle activities in both agonist and antagonist shoulder muscles to a less extent. Exoskeleton use reduced the anterior deltoid and serratus anterior activities by 27% to 43%. However, wearing the ExoStrap increased the upper trapezius activities by 23% to 38% in the overhead posture. Furthermore, an increased human-shaker handle coupling was observed in the OH posture when wearing the ExoVest, indicating a more demanding neuromuscular control.</p>\",\"PeriodicalId\":50503,\"journal\":{\"name\":\"Ergonomics\",\"volume\":\" \",\"pages\":\"2112-2125\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00140139.2024.2372003\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2372003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
The effects of exoskeleton use on human response to simulated overhead tasks with vibration.
The use of occupational exoskeletons has grown fast in manufacturing industries in recent years. One major scenario of exoskeleton use in manufacturing is to assist overhead, power hand tool operations. This preliminary work aimed to determine the effects of arm-supporting exoskeletons on shoulder muscle activity and human-hand tool coupling in simulated overhead tasks with axially applied vibration. An electromagnetic shaker capable of producing the random vibration spectrum specified in ISO 10819 was hung overhead to deliver vibrations. Two passive, arm-supporting exoskeletons, with one (ExoVest) transferring load to both the shoulder and pelvic region while the second one (ExoStrap) transferring load primarily to the pelvic region, were used in testing. Testing was also done with the shaker placed in front of the body to better understand the posture and exoskeleton engagement effects. The results collected from 6 healthy male subjects demonstrate the dominating effects of the overhead working posture on increased shoulder muscle activities. Vibration led to higher muscle activities in both agonist and antagonist shoulder muscles to a less extent. Exoskeleton use reduced the anterior deltoid and serratus anterior activities by 27% to 43%. However, wearing the ExoStrap increased the upper trapezius activities by 23% to 38% in the overhead posture. Furthermore, an increased human-shaker handle coupling was observed in the OH posture when wearing the ExoVest, indicating a more demanding neuromuscular control.
期刊介绍:
Ergonomics, also known as human factors, is the scientific discipline that seeks to understand and improve human interactions with products, equipment, environments and systems. Drawing upon human biology, psychology, engineering and design, Ergonomics aims to develop and apply knowledge and techniques to optimise system performance, whilst protecting the health, safety and well-being of individuals involved. The attention of ergonomics extends across work, leisure and other aspects of our daily lives.
The journal Ergonomics is an international refereed publication, with a 60 year tradition of disseminating high quality research. Original submissions, both theoretical and applied, are invited from across the subject, including physical, cognitive, organisational and environmental ergonomics. Papers reporting the findings of research from cognate disciplines are also welcome, where these contribute to understanding equipment, tasks, jobs, systems and environments and the corresponding needs, abilities and limitations of people.
All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymous refereeing by independent expert referees.