[人工智能在青光眼中的应用。第一部分:神经网络和深度学习在青光眼筛查和诊断中的应用]。神经网络和深度学习在青光眼筛查和诊断中的应用]。

Q3 Medicine
N I Kurysheva, O Ye Rodionova, A L Pomerantsev, G A Sharova
{"title":"[人工智能在青光眼中的应用。第一部分:神经网络和深度学习在青光眼筛查和诊断中的应用]。神经网络和深度学习在青光眼筛查和诊断中的应用]。","authors":"N I Kurysheva, O Ye Rodionova, A L Pomerantsev, G A Sharova","doi":"10.17116/oftalma202414003182","DOIUrl":null,"url":null,"abstract":"<p><p>This article reviews literature on the use of artificial intelligence (AI) for screening, diagnosis, monitoring and treatment of glaucoma. The first part of the review provides information how AI methods improve the effectiveness of glaucoma screening, presents the technologies using deep learning, including neural networks, for the analysis of big data obtained by methods of ocular imaging (fundus imaging, optical coherence tomography of the anterior and posterior eye segments, digital gonioscopy, ultrasound biomicroscopy, etc.), including a multimodal approach. The results found in the reviewed literature are contradictory, indicating that improvement of the AI models requires further research and a standardized approach. The use of neural networks for timely detection of glaucoma based on multimodal imaging will reduce the risk of blindness associated with glaucoma.</p>","PeriodicalId":23529,"journal":{"name":"Vestnik oftalmologii","volume":"140 3","pages":"82-87"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Application of artificial intelligence in glaucoma. Part 1. Neural networks and deep learning in glaucoma screening and diagnosis].\",\"authors\":\"N I Kurysheva, O Ye Rodionova, A L Pomerantsev, G A Sharova\",\"doi\":\"10.17116/oftalma202414003182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article reviews literature on the use of artificial intelligence (AI) for screening, diagnosis, monitoring and treatment of glaucoma. The first part of the review provides information how AI methods improve the effectiveness of glaucoma screening, presents the technologies using deep learning, including neural networks, for the analysis of big data obtained by methods of ocular imaging (fundus imaging, optical coherence tomography of the anterior and posterior eye segments, digital gonioscopy, ultrasound biomicroscopy, etc.), including a multimodal approach. The results found in the reviewed literature are contradictory, indicating that improvement of the AI models requires further research and a standardized approach. The use of neural networks for timely detection of glaucoma based on multimodal imaging will reduce the risk of blindness associated with glaucoma.</p>\",\"PeriodicalId\":23529,\"journal\":{\"name\":\"Vestnik oftalmologii\",\"volume\":\"140 3\",\"pages\":\"82-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik oftalmologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17116/oftalma202414003182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik oftalmologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17116/oftalma202414003182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了有关将人工智能(AI)用于青光眼筛查、诊断、监测和治疗的文献。综述的第一部分介绍了人工智能方法如何提高青光眼筛查的有效性,介绍了利用深度学习(包括神经网络)分析眼部成像方法(眼底成像、前后眼球光学相干断层扫描、数字眼底镜检查、超声生物显微镜检查等)获得的大数据的技术,包括多模态方法。所查阅文献中发现的结果相互矛盾,这表明人工智能模型的改进需要进一步的研究和标准化的方法。使用神经网络根据多模态成像及时发现青光眼,将降低与青光眼相关的失明风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Application of artificial intelligence in glaucoma. Part 1. Neural networks and deep learning in glaucoma screening and diagnosis].

This article reviews literature on the use of artificial intelligence (AI) for screening, diagnosis, monitoring and treatment of glaucoma. The first part of the review provides information how AI methods improve the effectiveness of glaucoma screening, presents the technologies using deep learning, including neural networks, for the analysis of big data obtained by methods of ocular imaging (fundus imaging, optical coherence tomography of the anterior and posterior eye segments, digital gonioscopy, ultrasound biomicroscopy, etc.), including a multimodal approach. The results found in the reviewed literature are contradictory, indicating that improvement of the AI models requires further research and a standardized approach. The use of neural networks for timely detection of glaucoma based on multimodal imaging will reduce the risk of blindness associated with glaucoma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vestnik oftalmologii
Vestnik oftalmologii Medicine-Ophthalmology
CiteScore
0.80
自引率
0.00%
发文量
129
期刊介绍: The journal publishes materials on the diagnosis and treatment of eye diseases, hygiene of vision, prevention of ophthalmic affections, history of Russian ophthalmology, organization of ophthalmological aid to the population, as well as the problems of special equipment. Original scientific articles and surveys on urgent problems of theory and practice of Russian and foreign ophthalmology are published. The journal contains book reviews on ophthalmology, information on the activities of ophthalmologists" scientific societies, chronicle of congresses and conferences.The journal is intended for ophthalmologists and scientific workers dealing with clinical problems of diseases of the eye and physiology of vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信