N I Kurysheva, O Ye Rodionova, A L Pomerantsev, G A Sharova
{"title":"[人工智能在青光眼中的应用。第一部分:神经网络和深度学习在青光眼筛查和诊断中的应用]。神经网络和深度学习在青光眼筛查和诊断中的应用]。","authors":"N I Kurysheva, O Ye Rodionova, A L Pomerantsev, G A Sharova","doi":"10.17116/oftalma202414003182","DOIUrl":null,"url":null,"abstract":"<p><p>This article reviews literature on the use of artificial intelligence (AI) for screening, diagnosis, monitoring and treatment of glaucoma. The first part of the review provides information how AI methods improve the effectiveness of glaucoma screening, presents the technologies using deep learning, including neural networks, for the analysis of big data obtained by methods of ocular imaging (fundus imaging, optical coherence tomography of the anterior and posterior eye segments, digital gonioscopy, ultrasound biomicroscopy, etc.), including a multimodal approach. The results found in the reviewed literature are contradictory, indicating that improvement of the AI models requires further research and a standardized approach. The use of neural networks for timely detection of glaucoma based on multimodal imaging will reduce the risk of blindness associated with glaucoma.</p>","PeriodicalId":23529,"journal":{"name":"Vestnik oftalmologii","volume":"140 3","pages":"82-87"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Application of artificial intelligence in glaucoma. Part 1. Neural networks and deep learning in glaucoma screening and diagnosis].\",\"authors\":\"N I Kurysheva, O Ye Rodionova, A L Pomerantsev, G A Sharova\",\"doi\":\"10.17116/oftalma202414003182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article reviews literature on the use of artificial intelligence (AI) for screening, diagnosis, monitoring and treatment of glaucoma. The first part of the review provides information how AI methods improve the effectiveness of glaucoma screening, presents the technologies using deep learning, including neural networks, for the analysis of big data obtained by methods of ocular imaging (fundus imaging, optical coherence tomography of the anterior and posterior eye segments, digital gonioscopy, ultrasound biomicroscopy, etc.), including a multimodal approach. The results found in the reviewed literature are contradictory, indicating that improvement of the AI models requires further research and a standardized approach. The use of neural networks for timely detection of glaucoma based on multimodal imaging will reduce the risk of blindness associated with glaucoma.</p>\",\"PeriodicalId\":23529,\"journal\":{\"name\":\"Vestnik oftalmologii\",\"volume\":\"140 3\",\"pages\":\"82-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik oftalmologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17116/oftalma202414003182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik oftalmologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17116/oftalma202414003182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Application of artificial intelligence in glaucoma. Part 1. Neural networks and deep learning in glaucoma screening and diagnosis].
This article reviews literature on the use of artificial intelligence (AI) for screening, diagnosis, monitoring and treatment of glaucoma. The first part of the review provides information how AI methods improve the effectiveness of glaucoma screening, presents the technologies using deep learning, including neural networks, for the analysis of big data obtained by methods of ocular imaging (fundus imaging, optical coherence tomography of the anterior and posterior eye segments, digital gonioscopy, ultrasound biomicroscopy, etc.), including a multimodal approach. The results found in the reviewed literature are contradictory, indicating that improvement of the AI models requires further research and a standardized approach. The use of neural networks for timely detection of glaucoma based on multimodal imaging will reduce the risk of blindness associated with glaucoma.
期刊介绍:
The journal publishes materials on the diagnosis and treatment of eye diseases, hygiene of vision, prevention of ophthalmic affections, history of Russian ophthalmology, organization of ophthalmological aid to the population, as well as the problems of special equipment. Original scientific articles and surveys on urgent problems of theory and practice of Russian and foreign ophthalmology are published. The journal contains book reviews on ophthalmology, information on the activities of ophthalmologists" scientific societies, chronicle of congresses and conferences.The journal is intended for ophthalmologists and scientific workers dealing with clinical problems of diseases of the eye and physiology of vision.