Carl M. Kobel, Jenny Merkesvik, Idun Maria Tokvam Burgos, Wanxin Lai, Ove Øyås, Phillip B. Pope, Torgeir R. Hvidsten and Velma T. E. Aho
{"title":"利用整体组学整合宿主和微生物组生物学。","authors":"Carl M. Kobel, Jenny Merkesvik, Idun Maria Tokvam Burgos, Wanxin Lai, Ove Øyås, Phillip B. Pope, Torgeir R. Hvidsten and Velma T. E. Aho","doi":"10.1039/D4MO00017J","DOIUrl":null,"url":null,"abstract":"<p >Holo-omics is the use of omics data to study a host and its inherent microbiomes – a biological system known as a “holobiont”. A microbiome that exists in such a space often encounters habitat stability and in return provides metabolic capacities that can benefit their host. Here we present an overview of beneficial host–microbiome systems and propose and discuss several methodological frameworks that can be used to investigate the intricacies of the many as yet undefined host–microbiome interactions that influence holobiont homeostasis. While this is an emerging field, we anticipate that ongoing methodological advancements will enhance the biological resolution that is necessary to improve our understanding of host–microbiome interplay to make meaningful interpretations and biotechnological applications.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" 7","pages":" 438-452"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mo/d4mo00017j?page=search","citationCount":"0","resultStr":"{\"title\":\"Integrating host and microbiome biology using holo-omics\",\"authors\":\"Carl M. Kobel, Jenny Merkesvik, Idun Maria Tokvam Burgos, Wanxin Lai, Ove Øyås, Phillip B. Pope, Torgeir R. Hvidsten and Velma T. E. Aho\",\"doi\":\"10.1039/D4MO00017J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Holo-omics is the use of omics data to study a host and its inherent microbiomes – a biological system known as a “holobiont”. A microbiome that exists in such a space often encounters habitat stability and in return provides metabolic capacities that can benefit their host. Here we present an overview of beneficial host–microbiome systems and propose and discuss several methodological frameworks that can be used to investigate the intricacies of the many as yet undefined host–microbiome interactions that influence holobiont homeostasis. While this is an emerging field, we anticipate that ongoing methodological advancements will enhance the biological resolution that is necessary to improve our understanding of host–microbiome interplay to make meaningful interpretations and biotechnological applications.</p>\",\"PeriodicalId\":19065,\"journal\":{\"name\":\"Molecular omics\",\"volume\":\" 7\",\"pages\":\" 438-452\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/mo/d4mo00017j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular omics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/mo/d4mo00017j\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mo/d4mo00017j","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Integrating host and microbiome biology using holo-omics
Holo-omics is the use of omics data to study a host and its inherent microbiomes – a biological system known as a “holobiont”. A microbiome that exists in such a space often encounters habitat stability and in return provides metabolic capacities that can benefit their host. Here we present an overview of beneficial host–microbiome systems and propose and discuss several methodological frameworks that can be used to investigate the intricacies of the many as yet undefined host–microbiome interactions that influence holobiont homeostasis. While this is an emerging field, we anticipate that ongoing methodological advancements will enhance the biological resolution that is necessary to improve our understanding of host–microbiome interplay to make meaningful interpretations and biotechnological applications.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.