Erpeng Wu, Chenlu Wu, Kelong Jia, Shen'ao Zhou, Liming Sun
{"title":"HSPA8 抑制剂可通过加强坏死作用提高癌症化疗效果。","authors":"Erpeng Wu, Chenlu Wu, Kelong Jia, Shen'ao Zhou, Liming Sun","doi":"10.1091/mbc.E24-04-0194","DOIUrl":null,"url":null,"abstract":"<p><p>Our recent work has uncovered a novel function of HSPA8 as an amyloidase, capable of dismantling the RHIM-containing protein fibrils to suppress necroptosis. However, the impact of HSPA8 inhibitors on cancer regression via necroptosis remains unexplored. In this study, we conducted a comprehensive investigation to assess the potential of HSPA8 inhibitors in enhancing necroptosis both in vitro and in vivo. Our findings indicate that pharmacologic inhibition of HSPA8, achieved either through VER (VER-155008) targeting the nucleotide binding domain or pifithrin-μ targeting the substrate binding domain of HSPA8, significantly potentiates necroptosis induced by diverse treatments in cellular assays. These inhibitors effectively disrupt the binding of HSPA8 to the RHIM protein, impeding its regulatory function on RHIM amyloid formation. Importantly, HSPA8 inhibitors significantly enhanced cancer cell sensitivity to microtubule-targeting agents (MTAs) in vitro, while reversing chemoresistance and facilitating tumor regression by augmenting necroptosis in vivo. Our findings suggest a promising therapeutic approach to cancer through necroptosis modulation via HSPA8 targeting, particularly in combination with MTA drugs for enhanced treatment efficacy.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321035/pdf/","citationCount":"0","resultStr":"{\"title\":\"HSPA8 inhibitors augment cancer chemotherapeutic effectiveness via potentiating necroptosis.\",\"authors\":\"Erpeng Wu, Chenlu Wu, Kelong Jia, Shen'ao Zhou, Liming Sun\",\"doi\":\"10.1091/mbc.E24-04-0194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our recent work has uncovered a novel function of HSPA8 as an amyloidase, capable of dismantling the RHIM-containing protein fibrils to suppress necroptosis. However, the impact of HSPA8 inhibitors on cancer regression via necroptosis remains unexplored. In this study, we conducted a comprehensive investigation to assess the potential of HSPA8 inhibitors in enhancing necroptosis both in vitro and in vivo. Our findings indicate that pharmacologic inhibition of HSPA8, achieved either through VER (VER-155008) targeting the nucleotide binding domain or pifithrin-μ targeting the substrate binding domain of HSPA8, significantly potentiates necroptosis induced by diverse treatments in cellular assays. These inhibitors effectively disrupt the binding of HSPA8 to the RHIM protein, impeding its regulatory function on RHIM amyloid formation. Importantly, HSPA8 inhibitors significantly enhanced cancer cell sensitivity to microtubule-targeting agents (MTAs) in vitro, while reversing chemoresistance and facilitating tumor regression by augmenting necroptosis in vivo. Our findings suggest a promising therapeutic approach to cancer through necroptosis modulation via HSPA8 targeting, particularly in combination with MTA drugs for enhanced treatment efficacy.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321035/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.E24-04-0194\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-04-0194","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
HSPA8 inhibitors augment cancer chemotherapeutic effectiveness via potentiating necroptosis.
Our recent work has uncovered a novel function of HSPA8 as an amyloidase, capable of dismantling the RHIM-containing protein fibrils to suppress necroptosis. However, the impact of HSPA8 inhibitors on cancer regression via necroptosis remains unexplored. In this study, we conducted a comprehensive investigation to assess the potential of HSPA8 inhibitors in enhancing necroptosis both in vitro and in vivo. Our findings indicate that pharmacologic inhibition of HSPA8, achieved either through VER (VER-155008) targeting the nucleotide binding domain or pifithrin-μ targeting the substrate binding domain of HSPA8, significantly potentiates necroptosis induced by diverse treatments in cellular assays. These inhibitors effectively disrupt the binding of HSPA8 to the RHIM protein, impeding its regulatory function on RHIM amyloid formation. Importantly, HSPA8 inhibitors significantly enhanced cancer cell sensitivity to microtubule-targeting agents (MTAs) in vitro, while reversing chemoresistance and facilitating tumor regression by augmenting necroptosis in vivo. Our findings suggest a promising therapeutic approach to cancer through necroptosis modulation via HSPA8 targeting, particularly in combination with MTA drugs for enhanced treatment efficacy.