{"title":"长读测序确定了 ATP7A 内含子深处的 SVA_D 逆转录质子插入是导致枕角综合征的新病因。","authors":"Naoko Yano, Pin Fee Chong, Kenji K Kojima, Tomoichiro Miyoshi, Ahmad Luqman-Fatah, Yu Kimura, Kengo Kora, Taisei Kayaki, Kanako Maizuru, Takahiro Hayashi, Atsushi Yokoyama, Masahiko Ajiro, Masatoshi Hagiwara, Teruyuki Kondo, Ryutaro Kira, Junko Takita, Takeshi Yoshida","doi":"10.1136/jmg-2024-110056","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>SINE-VNTR-Alu (SVA) retrotransposons move from one genomic location to another in a 'copy-and-paste' manner. They continue to move actively and cause monogenic diseases through various mechanisms. Currently, disease-causing SVA retrotransposons are classified into human-specific young SVA_E or SVA_F subfamilies. In this study, we identified an evolutionarily old SVA_D retrotransposon as a novel cause of occipital horn syndrome (OHS). OHS is an X-linked, copper metabolism disorder caused by dysfunction of the copper transporter, ATP7A.</p><p><strong>Methods: </strong>We investigated a 16-year-old boy with OHS whose pathogenic variant could not be detected via routine molecular genetic analyses.</p><p><strong>Results: </strong>A 2.8 kb insertion was detected deep within the intron of the patient's <i>ATP7A</i> gene. This insertion caused aberrant mRNA splicing activated by a new donor splice site located within it. Long-read circular consensus sequencing enabled us to accurately read the entire insertion sequence, which contained highly repetitive and GC-rich segments. Consequently, the insertion was identified as an SVA_D retrotransposon. Antisense oligonucleotides (AOs) targeting the new splice site restored the expression of normal transcripts and functional ATP7A proteins. AO treatment alleviated excessive accumulation of copper in patient fibroblasts in a dose-dependent manner. Pedigree analysis revealed that the retrotransposon had moved into the OHS-causing position two generations ago.</p><p><strong>Conclusion: </strong>This is the first report of a human monogenic disease caused by the SVA_D retrotransposon. The fact that the evolutionarily old SVA_D is still actively transposed, leading to increased copy numbers may make a notable impact on rare genetic disease research.</p>","PeriodicalId":16237,"journal":{"name":"Journal of Medical Genetics","volume":" ","pages":"950-958"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-read sequencing identifies an SVA_D retrotransposon insertion deep within the intron of <i>ATP7A</i> as a novel cause of occipital horn syndrome.\",\"authors\":\"Naoko Yano, Pin Fee Chong, Kenji K Kojima, Tomoichiro Miyoshi, Ahmad Luqman-Fatah, Yu Kimura, Kengo Kora, Taisei Kayaki, Kanako Maizuru, Takahiro Hayashi, Atsushi Yokoyama, Masahiko Ajiro, Masatoshi Hagiwara, Teruyuki Kondo, Ryutaro Kira, Junko Takita, Takeshi Yoshida\",\"doi\":\"10.1136/jmg-2024-110056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>SINE-VNTR-Alu (SVA) retrotransposons move from one genomic location to another in a 'copy-and-paste' manner. They continue to move actively and cause monogenic diseases through various mechanisms. Currently, disease-causing SVA retrotransposons are classified into human-specific young SVA_E or SVA_F subfamilies. In this study, we identified an evolutionarily old SVA_D retrotransposon as a novel cause of occipital horn syndrome (OHS). OHS is an X-linked, copper metabolism disorder caused by dysfunction of the copper transporter, ATP7A.</p><p><strong>Methods: </strong>We investigated a 16-year-old boy with OHS whose pathogenic variant could not be detected via routine molecular genetic analyses.</p><p><strong>Results: </strong>A 2.8 kb insertion was detected deep within the intron of the patient's <i>ATP7A</i> gene. This insertion caused aberrant mRNA splicing activated by a new donor splice site located within it. Long-read circular consensus sequencing enabled us to accurately read the entire insertion sequence, which contained highly repetitive and GC-rich segments. Consequently, the insertion was identified as an SVA_D retrotransposon. Antisense oligonucleotides (AOs) targeting the new splice site restored the expression of normal transcripts and functional ATP7A proteins. AO treatment alleviated excessive accumulation of copper in patient fibroblasts in a dose-dependent manner. Pedigree analysis revealed that the retrotransposon had moved into the OHS-causing position two generations ago.</p><p><strong>Conclusion: </strong>This is the first report of a human monogenic disease caused by the SVA_D retrotransposon. The fact that the evolutionarily old SVA_D is still actively transposed, leading to increased copy numbers may make a notable impact on rare genetic disease research.</p>\",\"PeriodicalId\":16237,\"journal\":{\"name\":\"Journal of Medical Genetics\",\"volume\":\" \",\"pages\":\"950-958\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jmg-2024-110056\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jmg-2024-110056","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Long-read sequencing identifies an SVA_D retrotransposon insertion deep within the intron of ATP7A as a novel cause of occipital horn syndrome.
Background: SINE-VNTR-Alu (SVA) retrotransposons move from one genomic location to another in a 'copy-and-paste' manner. They continue to move actively and cause monogenic diseases through various mechanisms. Currently, disease-causing SVA retrotransposons are classified into human-specific young SVA_E or SVA_F subfamilies. In this study, we identified an evolutionarily old SVA_D retrotransposon as a novel cause of occipital horn syndrome (OHS). OHS is an X-linked, copper metabolism disorder caused by dysfunction of the copper transporter, ATP7A.
Methods: We investigated a 16-year-old boy with OHS whose pathogenic variant could not be detected via routine molecular genetic analyses.
Results: A 2.8 kb insertion was detected deep within the intron of the patient's ATP7A gene. This insertion caused aberrant mRNA splicing activated by a new donor splice site located within it. Long-read circular consensus sequencing enabled us to accurately read the entire insertion sequence, which contained highly repetitive and GC-rich segments. Consequently, the insertion was identified as an SVA_D retrotransposon. Antisense oligonucleotides (AOs) targeting the new splice site restored the expression of normal transcripts and functional ATP7A proteins. AO treatment alleviated excessive accumulation of copper in patient fibroblasts in a dose-dependent manner. Pedigree analysis revealed that the retrotransposon had moved into the OHS-causing position two generations ago.
Conclusion: This is the first report of a human monogenic disease caused by the SVA_D retrotransposon. The fact that the evolutionarily old SVA_D is still actively transposed, leading to increased copy numbers may make a notable impact on rare genetic disease research.
期刊介绍:
Journal of Medical Genetics is a leading international peer-reviewed journal covering original research in human genetics, including reviews of and opinion on the latest developments. Articles cover the molecular basis of human disease including germline cancer genetics, clinical manifestations of genetic disorders, applications of molecular genetics to medical practice and the systematic evaluation of such applications worldwide.