{"title":"长须鲸食道的形态和力学:长须鲸食道的形态和力学:长须鲸快速处理大量食物的关键。","authors":"K N Gil, A W Vogl, R E Shadwick","doi":"10.1093/iob/obae020","DOIUrl":null,"url":null,"abstract":"<p><p>Lunge feeding rorqual whales feed by engulfing a volume of prey laden water that can be as large as their own body. Multiple feeding lunges occur during a single foraging dive and the time between each lunge can be as short as 30 s (Goldbogen et al. 2013). During this short inter-lunge time, water is filtered out through baleen to concentrate prey in the oral cavity, and then the prey is swallowed prior to initiating the next lunge. Prey density in the ocean varies greatly, and despite the potential of swallowing a massive volume of concentrated prey as a slurry, the esophagus of rorqual whales has been anecdotally described as unexpectedly narrow with a limited capacity to expand. How rorquals swallow large quantities of food down a narrow esophagus during a limited inter-lunge time remains unknown. Here, we show that the small diameter muscular esophagus in the fin whale is optimized to transport a slurry of food to the stomach. A thick wall of striated muscle occurs at the pharyngeal end of the esophagus which, together with the muscular wall of the pharynx, may generate a pressure head for transporting the food down the esophagus to the stomach as a continuous stream rather than separating the food into individual boluses swallowed separately. This simple model is consistent with estimates of prey density and stomach capacity. Rorquals may be the only animals that capture a volume of food too large to swallow as a single intact bolus without oral processing, so the adaptations of the esophagus are imperative for transporting these large volumes of concentrated food to the stomach during a time-limited dive involving multiple lunges.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"6 1","pages":"obae020"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221840/pdf/","citationCount":"0","resultStr":"{\"title\":\"Morphology and Mechanics of the Fin Whale Esophagus: The Key to Fast Processing of Large Food Volumes by Rorquals.\",\"authors\":\"K N Gil, A W Vogl, R E Shadwick\",\"doi\":\"10.1093/iob/obae020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lunge feeding rorqual whales feed by engulfing a volume of prey laden water that can be as large as their own body. Multiple feeding lunges occur during a single foraging dive and the time between each lunge can be as short as 30 s (Goldbogen et al. 2013). During this short inter-lunge time, water is filtered out through baleen to concentrate prey in the oral cavity, and then the prey is swallowed prior to initiating the next lunge. Prey density in the ocean varies greatly, and despite the potential of swallowing a massive volume of concentrated prey as a slurry, the esophagus of rorqual whales has been anecdotally described as unexpectedly narrow with a limited capacity to expand. How rorquals swallow large quantities of food down a narrow esophagus during a limited inter-lunge time remains unknown. Here, we show that the small diameter muscular esophagus in the fin whale is optimized to transport a slurry of food to the stomach. A thick wall of striated muscle occurs at the pharyngeal end of the esophagus which, together with the muscular wall of the pharynx, may generate a pressure head for transporting the food down the esophagus to the stomach as a continuous stream rather than separating the food into individual boluses swallowed separately. This simple model is consistent with estimates of prey density and stomach capacity. Rorquals may be the only animals that capture a volume of food too large to swallow as a single intact bolus without oral processing, so the adaptations of the esophagus are imperative for transporting these large volumes of concentrated food to the stomach during a time-limited dive involving multiple lunges.</p>\",\"PeriodicalId\":13666,\"journal\":{\"name\":\"Integrative Organismal Biology\",\"volume\":\"6 1\",\"pages\":\"obae020\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221840/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Organismal Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/iob/obae020\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Organismal Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/iob/obae020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Morphology and Mechanics of the Fin Whale Esophagus: The Key to Fast Processing of Large Food Volumes by Rorquals.
Lunge feeding rorqual whales feed by engulfing a volume of prey laden water that can be as large as their own body. Multiple feeding lunges occur during a single foraging dive and the time between each lunge can be as short as 30 s (Goldbogen et al. 2013). During this short inter-lunge time, water is filtered out through baleen to concentrate prey in the oral cavity, and then the prey is swallowed prior to initiating the next lunge. Prey density in the ocean varies greatly, and despite the potential of swallowing a massive volume of concentrated prey as a slurry, the esophagus of rorqual whales has been anecdotally described as unexpectedly narrow with a limited capacity to expand. How rorquals swallow large quantities of food down a narrow esophagus during a limited inter-lunge time remains unknown. Here, we show that the small diameter muscular esophagus in the fin whale is optimized to transport a slurry of food to the stomach. A thick wall of striated muscle occurs at the pharyngeal end of the esophagus which, together with the muscular wall of the pharynx, may generate a pressure head for transporting the food down the esophagus to the stomach as a continuous stream rather than separating the food into individual boluses swallowed separately. This simple model is consistent with estimates of prey density and stomach capacity. Rorquals may be the only animals that capture a volume of food too large to swallow as a single intact bolus without oral processing, so the adaptations of the esophagus are imperative for transporting these large volumes of concentrated food to the stomach during a time-limited dive involving multiple lunges.