{"title":"鼠李糖乳杆菌 LRa05 通过改善肠道通透性和平衡肠道微生物群减轻了酒精性脂肪肝小鼠的肝损伤。","authors":"J Gu, Y Chen, J Wang, Y Gao, Z Gai, Y Zhao, F Xu","doi":"10.1163/18762891-bja00022","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the effect of Lacticaseibacillus rhamnosus LRa05 on alcoholic fatty liver disease (ALD) and its mechanism for liver protection. Mice were randomly divided into three groups: a control (CLT) group, an ALD group, and a LRa05 intervention group. The ALD mouse model was established by Lieber-DeCarli chronic alcohol feeding. Tissues staining, enzyme-linked immunosorbent assay (ELISA) was performed to detect changes in histopathology and inflammatory cytokines, respectively. Moreover, intestinal permeability was evaluated by the level of dextran-fluorescein isothiocyanate (Dx-FITC) in serum and tight junction protein in the colon. Changes in the composition of the gut microbiota were assessed by 16S rRNA sequencing. Alcohol consumption induced liver damage in mice with significantly increased levels of triglycerides (TG), aspartate aminotransferase (AST), alanine transaminase (ALT), and inflammatory cytokines. Moreover, alcohol further induced the increase of intestinal permeability and disruption of gut microbiota in mice, with an increase in the relative abundance of potentially pathogenic bacteria Enterococcus, Parabacteroides, and Alistipes. LRa05 intervention significantly attenuated alcohol-induced liver injury by reducing the contents of TG, ALT, and AST, and suppressing the inflammatory responses. Meanwhile, by stimulating the expression of ZO-1, Occludin, and Claudin in the colon tissue, LRa05 additionally strengthened the intestine barrier function. Furthermore, gut microbiota analysis suggested that LRa05 partially ameliorated gut microbiota disorders in ALD mice and up-regulated the abundance of Desulfovibrio and Akkermansia, which were negatively correlated with the indicators of ALD progression. The reconstructive effects of LRa05 on the gut microbiota might be related to the efficacy of LRa05 in improving gut permeability and further protecting against ALD.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"481-493"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lacticaseibacillus rhamnosus LRa05 alleviated liver injury in mice with alcoholic fatty liver disease by improving intestinal permeability and balancing gut microbiota.\",\"authors\":\"J Gu, Y Chen, J Wang, Y Gao, Z Gai, Y Zhao, F Xu\",\"doi\":\"10.1163/18762891-bja00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the effect of Lacticaseibacillus rhamnosus LRa05 on alcoholic fatty liver disease (ALD) and its mechanism for liver protection. Mice were randomly divided into three groups: a control (CLT) group, an ALD group, and a LRa05 intervention group. The ALD mouse model was established by Lieber-DeCarli chronic alcohol feeding. Tissues staining, enzyme-linked immunosorbent assay (ELISA) was performed to detect changes in histopathology and inflammatory cytokines, respectively. Moreover, intestinal permeability was evaluated by the level of dextran-fluorescein isothiocyanate (Dx-FITC) in serum and tight junction protein in the colon. Changes in the composition of the gut microbiota were assessed by 16S rRNA sequencing. Alcohol consumption induced liver damage in mice with significantly increased levels of triglycerides (TG), aspartate aminotransferase (AST), alanine transaminase (ALT), and inflammatory cytokines. Moreover, alcohol further induced the increase of intestinal permeability and disruption of gut microbiota in mice, with an increase in the relative abundance of potentially pathogenic bacteria Enterococcus, Parabacteroides, and Alistipes. LRa05 intervention significantly attenuated alcohol-induced liver injury by reducing the contents of TG, ALT, and AST, and suppressing the inflammatory responses. Meanwhile, by stimulating the expression of ZO-1, Occludin, and Claudin in the colon tissue, LRa05 additionally strengthened the intestine barrier function. Furthermore, gut microbiota analysis suggested that LRa05 partially ameliorated gut microbiota disorders in ALD mice and up-regulated the abundance of Desulfovibrio and Akkermansia, which were negatively correlated with the indicators of ALD progression. The reconstructive effects of LRa05 on the gut microbiota might be related to the efficacy of LRa05 in improving gut permeability and further protecting against ALD.</p>\",\"PeriodicalId\":8834,\"journal\":{\"name\":\"Beneficial microbes\",\"volume\":\" \",\"pages\":\"481-493\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beneficial microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1163/18762891-bja00022\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00022","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Lacticaseibacillus rhamnosus LRa05 alleviated liver injury in mice with alcoholic fatty liver disease by improving intestinal permeability and balancing gut microbiota.
This study investigated the effect of Lacticaseibacillus rhamnosus LRa05 on alcoholic fatty liver disease (ALD) and its mechanism for liver protection. Mice were randomly divided into three groups: a control (CLT) group, an ALD group, and a LRa05 intervention group. The ALD mouse model was established by Lieber-DeCarli chronic alcohol feeding. Tissues staining, enzyme-linked immunosorbent assay (ELISA) was performed to detect changes in histopathology and inflammatory cytokines, respectively. Moreover, intestinal permeability was evaluated by the level of dextran-fluorescein isothiocyanate (Dx-FITC) in serum and tight junction protein in the colon. Changes in the composition of the gut microbiota were assessed by 16S rRNA sequencing. Alcohol consumption induced liver damage in mice with significantly increased levels of triglycerides (TG), aspartate aminotransferase (AST), alanine transaminase (ALT), and inflammatory cytokines. Moreover, alcohol further induced the increase of intestinal permeability and disruption of gut microbiota in mice, with an increase in the relative abundance of potentially pathogenic bacteria Enterococcus, Parabacteroides, and Alistipes. LRa05 intervention significantly attenuated alcohol-induced liver injury by reducing the contents of TG, ALT, and AST, and suppressing the inflammatory responses. Meanwhile, by stimulating the expression of ZO-1, Occludin, and Claudin in the colon tissue, LRa05 additionally strengthened the intestine barrier function. Furthermore, gut microbiota analysis suggested that LRa05 partially ameliorated gut microbiota disorders in ALD mice and up-regulated the abundance of Desulfovibrio and Akkermansia, which were negatively correlated with the indicators of ALD progression. The reconstructive effects of LRa05 on the gut microbiota might be related to the efficacy of LRa05 in improving gut permeability and further protecting against ALD.
期刊介绍:
Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators.
The journal will have five major sections:
* Food, nutrition and health
* Animal nutrition
* Processing and application
* Regulatory & safety aspects
* Medical & health applications
In these sections, topics dealt with by Beneficial Microbes include:
* Worldwide safety and regulatory issues
* Human and animal nutrition and health effects
* Latest discoveries in mechanistic studies and screening methods to unravel mode of action
* Host physiology related to allergy, inflammation, obesity, etc.
* Trends in application of (meta)genomics, proteomics and metabolomics
* New developments in how processing optimizes pro- & prebiotics for application
* Bacterial physiology related to health benefits