F Laranjeiro, A Rotander, S López-Ibáñez, A Vilas, F Södergren Seilitz, C Clérandeau, M Sampalo, D Rial, J Bellas, J Cachot, R Almeda, R Beiras
{"title":"商业生物基聚合物浸出物对海洋浮游生物急性毒性的比较评估。","authors":"F Laranjeiro, A Rotander, S López-Ibáñez, A Vilas, F Södergren Seilitz, C Clérandeau, M Sampalo, D Rial, J Bellas, J Cachot, R Almeda, R Beiras","doi":"10.1016/j.scitotenv.2024.174403","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional plastics have become a major environmental concern due to their persistence and accumulation in marine ecosystems. The development of potential degradable polymers (PBP), such as polyhydroxyalkanoates (PHAs) and polylactic acid (PLA), has gained attention as an alternative to mitigate plastic pollution, since they have the potential to biodegrade under certain conditions, and their production is increasing as replacement of conventional polyolefins. This study aimed to assess and compare the toxicity of leachates of pre-compounding PBP (PLA and the PHA, polyhydroxybutyrate-covalerate (PHBv)) and polypropylene (PP) on five marine planktonic species. A battery of standard bioassays using bacteria, microalgae, sea urchin embryos, mussel embryos and copepod nauplii was conducted to assess the toxicity of leachates from those polymers. Additionally, the presence of chemical additives in the leachates was also verified through GC-MS and LC-HRMS analysis. Results showed that PHBv leachates exhibited higher toxicity compared to other polymers, with the microalgae Rhodomonas salina, being the most sensitive species to the tested leachates. On the other hand, PP and PLA generally displayed minimal to no toxicity in the studied species. Estimated species sensitivity distribution curves (SSD) show that PHBv leachates can be 10 times more hazardous to marine plankton than PP or PLA leachates, as demonstrated by the calculated Hazardous Concentration for 5 % of species (HC<sub>5</sub>). Qualitative chemical analysis supports the toxicological results, with 80 % of compounds being identified in PHBv leachates of which 2,4,6-trichlorophenol is worth mentioning due to the deleterious effects to aquatic biota described in literature. These findings underscore the fact that whereas environmental persistence can be targeted using PBP, the issue of chemical safety remains unsolved by some alternatives, such as PHBv. Gaining a comprehensive understanding of the toxicity profiles of PBP materials through a priori toxicological risk assessment is vital for their responsible application as alternatives to conventional plastics.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"174403"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative assessment of the acute toxicity of commercial bio-based polymer leachates on marine plankton.\",\"authors\":\"F Laranjeiro, A Rotander, S López-Ibáñez, A Vilas, F Södergren Seilitz, C Clérandeau, M Sampalo, D Rial, J Bellas, J Cachot, R Almeda, R Beiras\",\"doi\":\"10.1016/j.scitotenv.2024.174403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional plastics have become a major environmental concern due to their persistence and accumulation in marine ecosystems. The development of potential degradable polymers (PBP), such as polyhydroxyalkanoates (PHAs) and polylactic acid (PLA), has gained attention as an alternative to mitigate plastic pollution, since they have the potential to biodegrade under certain conditions, and their production is increasing as replacement of conventional polyolefins. This study aimed to assess and compare the toxicity of leachates of pre-compounding PBP (PLA and the PHA, polyhydroxybutyrate-covalerate (PHBv)) and polypropylene (PP) on five marine planktonic species. A battery of standard bioassays using bacteria, microalgae, sea urchin embryos, mussel embryos and copepod nauplii was conducted to assess the toxicity of leachates from those polymers. Additionally, the presence of chemical additives in the leachates was also verified through GC-MS and LC-HRMS analysis. Results showed that PHBv leachates exhibited higher toxicity compared to other polymers, with the microalgae Rhodomonas salina, being the most sensitive species to the tested leachates. On the other hand, PP and PLA generally displayed minimal to no toxicity in the studied species. Estimated species sensitivity distribution curves (SSD) show that PHBv leachates can be 10 times more hazardous to marine plankton than PP or PLA leachates, as demonstrated by the calculated Hazardous Concentration for 5 % of species (HC<sub>5</sub>). Qualitative chemical analysis supports the toxicological results, with 80 % of compounds being identified in PHBv leachates of which 2,4,6-trichlorophenol is worth mentioning due to the deleterious effects to aquatic biota described in literature. These findings underscore the fact that whereas environmental persistence can be targeted using PBP, the issue of chemical safety remains unsolved by some alternatives, such as PHBv. Gaining a comprehensive understanding of the toxicity profiles of PBP materials through a priori toxicological risk assessment is vital for their responsible application as alternatives to conventional plastics.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"174403\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.174403\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.174403","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Comparative assessment of the acute toxicity of commercial bio-based polymer leachates on marine plankton.
Conventional plastics have become a major environmental concern due to their persistence and accumulation in marine ecosystems. The development of potential degradable polymers (PBP), such as polyhydroxyalkanoates (PHAs) and polylactic acid (PLA), has gained attention as an alternative to mitigate plastic pollution, since they have the potential to biodegrade under certain conditions, and their production is increasing as replacement of conventional polyolefins. This study aimed to assess and compare the toxicity of leachates of pre-compounding PBP (PLA and the PHA, polyhydroxybutyrate-covalerate (PHBv)) and polypropylene (PP) on five marine planktonic species. A battery of standard bioassays using bacteria, microalgae, sea urchin embryos, mussel embryos and copepod nauplii was conducted to assess the toxicity of leachates from those polymers. Additionally, the presence of chemical additives in the leachates was also verified through GC-MS and LC-HRMS analysis. Results showed that PHBv leachates exhibited higher toxicity compared to other polymers, with the microalgae Rhodomonas salina, being the most sensitive species to the tested leachates. On the other hand, PP and PLA generally displayed minimal to no toxicity in the studied species. Estimated species sensitivity distribution curves (SSD) show that PHBv leachates can be 10 times more hazardous to marine plankton than PP or PLA leachates, as demonstrated by the calculated Hazardous Concentration for 5 % of species (HC5). Qualitative chemical analysis supports the toxicological results, with 80 % of compounds being identified in PHBv leachates of which 2,4,6-trichlorophenol is worth mentioning due to the deleterious effects to aquatic biota described in literature. These findings underscore the fact that whereas environmental persistence can be targeted using PBP, the issue of chemical safety remains unsolved by some alternatives, such as PHBv. Gaining a comprehensive understanding of the toxicity profiles of PBP materials through a priori toxicological risk assessment is vital for their responsible application as alternatives to conventional plastics.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.