有什么样的测试就有什么样的结果:噬菌体溶酶的杀菌效果在很大程度上取决于缓冲液的酸碱度和离子强度。

IF 5.7 2区 生物学
Roberto Vázquez, Diana Gutiérrez, Zoë Dezutter, Bjorn Criel, Philippe de Groote, Yves Briers
{"title":"有什么样的测试就有什么样的结果:噬菌体溶酶的杀菌效果在很大程度上取决于缓冲液的酸碱度和离子强度。","authors":"Roberto Vázquez,&nbsp;Diana Gutiérrez,&nbsp;Zoë Dezutter,&nbsp;Bjorn Criel,&nbsp;Philippe de Groote,&nbsp;Yves Briers","doi":"10.1111/1751-7915.14513","DOIUrl":null,"url":null,"abstract":"<p>The phage lysin field has done nothing but grow in the last decades. As a result, many different research groups around the world are contributing to the field, often with certain methodological differences that pose a challenge to the interpretation and comparison of results. In this work, we present the case study of three <i>Acinetobacter baumannii</i>-targeting phage lysins (wild-type endolysin LysMK34 plus engineered lysins eLysMK34 and 1D10) plus one lysin with broad activity against Gram-positive bacteria (PlySs2) to provide exemplary evidence on the risks of generalization when using one of the most common lysin evaluation assays: the killing assay with resting cells. To that end, we performed killing assays with the aforementioned lysins using hypo-, iso- and hypertonic buffers plus human serum either as the reaction or the dilution medium in a systematic manner. Our findings stress the perils of creating hypotonic conditions or a hypotonic shock during a killing assay, suggesting that hypotonic buffers should be avoided as a test environment or as diluents before plating to avoid overestimation of the killing effect in the assayed conditions. As a conclusion, we suggest that the nature of both the incubation and the dilution buffers should be always clearly identified when reporting killing activity data, and that for experimental consistency the same incubation buffer should be used as a diluent for posterior serial dilution and plating unless explicitly required by the experimental design. In addition, the most appropriate buffer mimicking the final application must be chosen to obtain relevant results.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 7","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14513","citationCount":"0","resultStr":"{\"title\":\"You get what you test for: The killing effect of phage lysins is highly dependent on buffer tonicity and ionic strength\",\"authors\":\"Roberto Vázquez,&nbsp;Diana Gutiérrez,&nbsp;Zoë Dezutter,&nbsp;Bjorn Criel,&nbsp;Philippe de Groote,&nbsp;Yves Briers\",\"doi\":\"10.1111/1751-7915.14513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The phage lysin field has done nothing but grow in the last decades. As a result, many different research groups around the world are contributing to the field, often with certain methodological differences that pose a challenge to the interpretation and comparison of results. In this work, we present the case study of three <i>Acinetobacter baumannii</i>-targeting phage lysins (wild-type endolysin LysMK34 plus engineered lysins eLysMK34 and 1D10) plus one lysin with broad activity against Gram-positive bacteria (PlySs2) to provide exemplary evidence on the risks of generalization when using one of the most common lysin evaluation assays: the killing assay with resting cells. To that end, we performed killing assays with the aforementioned lysins using hypo-, iso- and hypertonic buffers plus human serum either as the reaction or the dilution medium in a systematic manner. Our findings stress the perils of creating hypotonic conditions or a hypotonic shock during a killing assay, suggesting that hypotonic buffers should be avoided as a test environment or as diluents before plating to avoid overestimation of the killing effect in the assayed conditions. As a conclusion, we suggest that the nature of both the incubation and the dilution buffers should be always clearly identified when reporting killing activity data, and that for experimental consistency the same incubation buffer should be used as a diluent for posterior serial dilution and plating unless explicitly required by the experimental design. In addition, the most appropriate buffer mimicking the final application must be chosen to obtain relevant results.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"17 7\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14513\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14513\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14513","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过去几十年来,噬菌体溶菌酶领域不断发展壮大。因此,世界各地许多不同的研究小组都在为这一领域做出贡献,但往往在方法上存在某些差异,给结果的解释和比较带来了挑战。在这项工作中,我们介绍了针对鲍曼不动杆菌的三种噬菌体溶菌酶(野生型内溶菌酶 LysMK34、工程溶菌酶 eLysMK34 和 1D10)以及一种对革兰氏阳性菌具有广泛活性的溶菌酶(PlySs2)的案例研究,为使用最常见的溶菌酶评价方法之一:静止细胞杀灭试验时的以偏概全风险提供了示范性证据。为此,我们系统地使用低渗、等渗和高渗缓冲液以及人血清作为反应介质或稀释介质,对上述溶菌素进行了杀灭试验。我们的研究结果强调了在杀灭试验过程中制造低渗条件或低渗休克的危险性,建议应避免将低渗缓冲液作为试验环境或作为培养前的稀释剂,以避免在试验条件下高估杀灭效果。作为结论,我们建议在报告杀灭活性数据时,应始终明确指出孵育缓冲液和稀释缓冲液的性质,为保证实验的一致性,除非实验设计有明确要求,否则应使用相同的孵育缓冲液作为后继连续稀释和电镀的稀释液。此外,必须选择最合适的缓冲液来模拟最终应用,以获得相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

You get what you test for: The killing effect of phage lysins is highly dependent on buffer tonicity and ionic strength

You get what you test for: The killing effect of phage lysins is highly dependent on buffer tonicity and ionic strength

The phage lysin field has done nothing but grow in the last decades. As a result, many different research groups around the world are contributing to the field, often with certain methodological differences that pose a challenge to the interpretation and comparison of results. In this work, we present the case study of three Acinetobacter baumannii-targeting phage lysins (wild-type endolysin LysMK34 plus engineered lysins eLysMK34 and 1D10) plus one lysin with broad activity against Gram-positive bacteria (PlySs2) to provide exemplary evidence on the risks of generalization when using one of the most common lysin evaluation assays: the killing assay with resting cells. To that end, we performed killing assays with the aforementioned lysins using hypo-, iso- and hypertonic buffers plus human serum either as the reaction or the dilution medium in a systematic manner. Our findings stress the perils of creating hypotonic conditions or a hypotonic shock during a killing assay, suggesting that hypotonic buffers should be avoided as a test environment or as diluents before plating to avoid overestimation of the killing effect in the assayed conditions. As a conclusion, we suggest that the nature of both the incubation and the dilution buffers should be always clearly identified when reporting killing activity data, and that for experimental consistency the same incubation buffer should be used as a diluent for posterior serial dilution and plating unless explicitly required by the experimental design. In addition, the most appropriate buffer mimicking the final application must be chosen to obtain relevant results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信