{"title":"涉及 BBX22 和 HY5 的转录级联精细调节柑橘的植株高度和果实色素沉着。","authors":"Jialing Fu, Li Liao, Jiajing Jin, Zhihao Lu, Juan Sun, Lizhi Song, Yue Huang, Shengjun Liu, Ding Huang, Yuantao Xu, Jiaxian He, Bin Hu, Yiqun Zhu, Fangfang Wu, Xia Wang, Xiuxin Deng, Qiang Xu","doi":"10.1111/jipb.13719","DOIUrl":null,"url":null,"abstract":"<p>Dwarfing is a pivotal agronomic trait affecting both yield and quality. Citrus species exhibit substantial variation in plant height, among which internode length is a core element. However, the molecular mechanism governing internode elongation remains unclear. Here, we unveiled that the transcriptional cascade consisting of <i>B-BOX DOMAIN PROTEIN 22</i> (<i>BBX22</i>) and <i>ELONGATED HYPOCOTYL 5</i> (<i>HY5</i>) finely tunes plant height and internode elongation in citrus. Loss-of-function mutations of <i>BBX22</i> in an early-flowering citrus (<i>Citrus hindsii</i> “SJG”) promoted internode elongation and reduced pigment accumulation, whereas ectopic expression of <i>BBX22</i> in SJG, sweet orange (<i>C. sinensis</i>), pomelo (<i>C. maxima</i>) or heterologous expression of <i>BBX22</i> in tomato (<i>Solanum lycopersicum</i>) significantly decreased internode length. Furthermore, exogenous application of gibberellin A3 (GA<sub>3</sub>) rescued the shortened internode and dwarf phenotype caused by <i>BBX22</i> overexpression. Additional experiments revealed that BBX22 played a dual role in regulation internode elongation and pigmentation in citrus. On the one hand, it directly bound to and activated the expression of <i>HY5</i>, GA metabolism gene (<i>GA2 OXIDASE 8</i>, <i>GA2ox8</i>), carotenoid biosynthesis gene (<i>PHYTOENE SYNTHASE 1</i>, <i>PSY1</i>) and anthocyanin regulatory gene (<i>Ruby1,</i> a MYB DOMAIN PROTEIN). On the other hand, it acted as a cofactor of HY5, enhancing the ability of HY5 to regulate target genes expression. Together, our results reveal the critical role of the transcriptional cascade consisting of <i>BBX22</i> and <i>HY5</i> in controlling internode elongation and pigment accumulation in citrus. Unraveling the crosstalk regulatory mechanism between internode elongation and fruit pigmentation provides key genes for breeding of novel types with both dwarf and health-beneficial fortification in citrus.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 8","pages":"1752-1768"},"PeriodicalIF":9.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13719","citationCount":"0","resultStr":"{\"title\":\"A transcriptional cascade involving BBX22 and HY5 finely regulates both plant height and fruit pigmentation in citrus\",\"authors\":\"Jialing Fu, Li Liao, Jiajing Jin, Zhihao Lu, Juan Sun, Lizhi Song, Yue Huang, Shengjun Liu, Ding Huang, Yuantao Xu, Jiaxian He, Bin Hu, Yiqun Zhu, Fangfang Wu, Xia Wang, Xiuxin Deng, Qiang Xu\",\"doi\":\"10.1111/jipb.13719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dwarfing is a pivotal agronomic trait affecting both yield and quality. Citrus species exhibit substantial variation in plant height, among which internode length is a core element. However, the molecular mechanism governing internode elongation remains unclear. Here, we unveiled that the transcriptional cascade consisting of <i>B-BOX DOMAIN PROTEIN 22</i> (<i>BBX22</i>) and <i>ELONGATED HYPOCOTYL 5</i> (<i>HY5</i>) finely tunes plant height and internode elongation in citrus. Loss-of-function mutations of <i>BBX22</i> in an early-flowering citrus (<i>Citrus hindsii</i> “SJG”) promoted internode elongation and reduced pigment accumulation, whereas ectopic expression of <i>BBX22</i> in SJG, sweet orange (<i>C. sinensis</i>), pomelo (<i>C. maxima</i>) or heterologous expression of <i>BBX22</i> in tomato (<i>Solanum lycopersicum</i>) significantly decreased internode length. Furthermore, exogenous application of gibberellin A3 (GA<sub>3</sub>) rescued the shortened internode and dwarf phenotype caused by <i>BBX22</i> overexpression. Additional experiments revealed that BBX22 played a dual role in regulation internode elongation and pigmentation in citrus. On the one hand, it directly bound to and activated the expression of <i>HY5</i>, GA metabolism gene (<i>GA2 OXIDASE 8</i>, <i>GA2ox8</i>), carotenoid biosynthesis gene (<i>PHYTOENE SYNTHASE 1</i>, <i>PSY1</i>) and anthocyanin regulatory gene (<i>Ruby1,</i> a MYB DOMAIN PROTEIN). On the other hand, it acted as a cofactor of HY5, enhancing the ability of HY5 to regulate target genes expression. Together, our results reveal the critical role of the transcriptional cascade consisting of <i>BBX22</i> and <i>HY5</i> in controlling internode elongation and pigment accumulation in citrus. Unraveling the crosstalk regulatory mechanism between internode elongation and fruit pigmentation provides key genes for breeding of novel types with both dwarf and health-beneficial fortification in citrus.</p>\",\"PeriodicalId\":195,\"journal\":{\"name\":\"Journal of Integrative Plant Biology\",\"volume\":\"66 8\",\"pages\":\"1752-1768\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13719\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13719\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13719","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A transcriptional cascade involving BBX22 and HY5 finely regulates both plant height and fruit pigmentation in citrus
Dwarfing is a pivotal agronomic trait affecting both yield and quality. Citrus species exhibit substantial variation in plant height, among which internode length is a core element. However, the molecular mechanism governing internode elongation remains unclear. Here, we unveiled that the transcriptional cascade consisting of B-BOX DOMAIN PROTEIN 22 (BBX22) and ELONGATED HYPOCOTYL 5 (HY5) finely tunes plant height and internode elongation in citrus. Loss-of-function mutations of BBX22 in an early-flowering citrus (Citrus hindsii “SJG”) promoted internode elongation and reduced pigment accumulation, whereas ectopic expression of BBX22 in SJG, sweet orange (C. sinensis), pomelo (C. maxima) or heterologous expression of BBX22 in tomato (Solanum lycopersicum) significantly decreased internode length. Furthermore, exogenous application of gibberellin A3 (GA3) rescued the shortened internode and dwarf phenotype caused by BBX22 overexpression. Additional experiments revealed that BBX22 played a dual role in regulation internode elongation and pigmentation in citrus. On the one hand, it directly bound to and activated the expression of HY5, GA metabolism gene (GA2 OXIDASE 8, GA2ox8), carotenoid biosynthesis gene (PHYTOENE SYNTHASE 1, PSY1) and anthocyanin regulatory gene (Ruby1, a MYB DOMAIN PROTEIN). On the other hand, it acted as a cofactor of HY5, enhancing the ability of HY5 to regulate target genes expression. Together, our results reveal the critical role of the transcriptional cascade consisting of BBX22 and HY5 in controlling internode elongation and pigment accumulation in citrus. Unraveling the crosstalk regulatory mechanism between internode elongation and fruit pigmentation provides key genes for breeding of novel types with both dwarf and health-beneficial fortification in citrus.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.