非本地品系放养几代后,外来物种的入侵会影响 Salmo trutta 幼鱼的生活史特征。

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY
Dorte Bekkevold, Francois Besnier, Thomas Frank-Gopolos, Einar E. Nielsen, Kevin A. Glover
{"title":"非本地品系放养几代后,外来物种的入侵会影响 Salmo trutta 幼鱼的生活史特征。","authors":"Dorte Bekkevold,&nbsp;Francois Besnier,&nbsp;Thomas Frank-Gopolos,&nbsp;Einar E. Nielsen,&nbsp;Kevin A. Glover","doi":"10.1111/eva.13725","DOIUrl":null,"url":null,"abstract":"<p>Introgression of non-native conspecifics changes the genetic composition of wild populations, potentially leading to loss of local adaptations and fitness declines. However, long-term data from wild populations are still relatively few. Here, we studied the effects of introgression in a Danish brown trout (<i>Salmo trutta</i>, L.) population, subjected to intensive stocking with domesticated hatchery fish of non-native origin. We used wild-caught genetically wild and admixed trout as well as fish from the partly domesticated hatchery strain used for stocking the river up until ~15 years prior to this study, to produce 22 families varying in hatchery/wild admixture. Following a replicated common-garden experiment conducted in fish tanks from first feeding through 23 weeks at 7, 12, and 16°C, we observed a significant positive relationship between family admixture and fish size upon termination, an effect observed through all levels of admixture. Furthermore, the admixture effect was most distinct at the higher rearing temperatures. Although the hatchery strain used for stocking had been in culture for ~7 generations, it had not been deliberately selected for increased growth. These data thus demonstrate: (i) that growth had increased in the hatchery strain even in the absence of deliberate directional selection for this trait, (ii) that the increasing effect of admixture by temperature could represent inadvertent selection for performance in the hatchery strain at higher temperatures, and most significantly, (iii) that despite undergoing up to five generations of natural selection in the admixed wild population, the genetically increased growth potential was still detectable and thus persistent. Our findings suggest that altered growth patterns and potentially their cascading effects are of importance to the severity of hatchery/wild introgression, especially under changing-climate scenarios and are of general significance to conservation practitioners seeking to evaluate long-term effects of intra-specific hybridization including under recovery.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219512/pdf/","citationCount":"0","resultStr":"{\"title\":\"Introgression affects Salmo trutta juvenile life-history traits generations after stocking with non-native strains\",\"authors\":\"Dorte Bekkevold,&nbsp;Francois Besnier,&nbsp;Thomas Frank-Gopolos,&nbsp;Einar E. Nielsen,&nbsp;Kevin A. Glover\",\"doi\":\"10.1111/eva.13725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Introgression of non-native conspecifics changes the genetic composition of wild populations, potentially leading to loss of local adaptations and fitness declines. However, long-term data from wild populations are still relatively few. Here, we studied the effects of introgression in a Danish brown trout (<i>Salmo trutta</i>, L.) population, subjected to intensive stocking with domesticated hatchery fish of non-native origin. We used wild-caught genetically wild and admixed trout as well as fish from the partly domesticated hatchery strain used for stocking the river up until ~15 years prior to this study, to produce 22 families varying in hatchery/wild admixture. Following a replicated common-garden experiment conducted in fish tanks from first feeding through 23 weeks at 7, 12, and 16°C, we observed a significant positive relationship between family admixture and fish size upon termination, an effect observed through all levels of admixture. Furthermore, the admixture effect was most distinct at the higher rearing temperatures. Although the hatchery strain used for stocking had been in culture for ~7 generations, it had not been deliberately selected for increased growth. These data thus demonstrate: (i) that growth had increased in the hatchery strain even in the absence of deliberate directional selection for this trait, (ii) that the increasing effect of admixture by temperature could represent inadvertent selection for performance in the hatchery strain at higher temperatures, and most significantly, (iii) that despite undergoing up to five generations of natural selection in the admixed wild population, the genetically increased growth potential was still detectable and thus persistent. Our findings suggest that altered growth patterns and potentially their cascading effects are of importance to the severity of hatchery/wild introgression, especially under changing-climate scenarios and are of general significance to conservation practitioners seeking to evaluate long-term effects of intra-specific hybridization including under recovery.</p>\",\"PeriodicalId\":168,\"journal\":{\"name\":\"Evolutionary Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219512/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eva.13725\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.13725","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

非本地同种生物的入侵改变了野生种群的遗传组成,可能导致本地适应性的丧失和适应能力的下降。然而,来自野生种群的长期数据仍然相对较少。在这里,我们研究了在丹麦褐鳟(Salmo trutta,L.)种群中引入非本地驯化鱼苗的影响。我们使用了野生捕获的基因野生鳟鱼和混杂鳟鱼,以及在本研究之前约 15 年一直用于放养该河流的部分驯化孵化品系的鱼类,从而产生了 22 个在孵化/野生混杂方面各不相同的品系。在 7、12 和 16 摄氏度条件下,在鱼缸中进行了从首次喂养到 23 周的重复性普通花园实验,我们观察到,在终止实验时,家庭混养与鱼体大小之间存在显著的正相关关系,在所有混养水平下都能观察到这种效应。此外,在较高的饲养温度下,掺杂效应最为明显。虽然用于放养的孵化品系已培养了约 7 代,但并未刻意为提高生长而进行选育。因此,这些数据证明:(i) 即使没有对孵化品系的生长性状进行有意的定向选择,孵化品系的生长性状也会增加;(ii) 温度对混杂效应的增加可能代表了孵化品系在较高温度下对生长性能的无意选择;最重要的是,(iii) 尽管在混杂的野生种群中经历了长达五代的自然选择,但基因上增加的生长潜力仍可检测到,因而具有持久性。我们的研究结果表明,生长模式的改变及其潜在的连带效应对孵化场/野外引种的严重程度具有重要意义,尤其是在气候不断变化的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Introgression affects Salmo trutta juvenile life-history traits generations after stocking with non-native strains

Introgression affects Salmo trutta juvenile life-history traits generations after stocking with non-native strains

Introgression of non-native conspecifics changes the genetic composition of wild populations, potentially leading to loss of local adaptations and fitness declines. However, long-term data from wild populations are still relatively few. Here, we studied the effects of introgression in a Danish brown trout (Salmo trutta, L.) population, subjected to intensive stocking with domesticated hatchery fish of non-native origin. We used wild-caught genetically wild and admixed trout as well as fish from the partly domesticated hatchery strain used for stocking the river up until ~15 years prior to this study, to produce 22 families varying in hatchery/wild admixture. Following a replicated common-garden experiment conducted in fish tanks from first feeding through 23 weeks at 7, 12, and 16°C, we observed a significant positive relationship between family admixture and fish size upon termination, an effect observed through all levels of admixture. Furthermore, the admixture effect was most distinct at the higher rearing temperatures. Although the hatchery strain used for stocking had been in culture for ~7 generations, it had not been deliberately selected for increased growth. These data thus demonstrate: (i) that growth had increased in the hatchery strain even in the absence of deliberate directional selection for this trait, (ii) that the increasing effect of admixture by temperature could represent inadvertent selection for performance in the hatchery strain at higher temperatures, and most significantly, (iii) that despite undergoing up to five generations of natural selection in the admixed wild population, the genetically increased growth potential was still detectable and thus persistent. Our findings suggest that altered growth patterns and potentially their cascading effects are of importance to the severity of hatchery/wild introgression, especially under changing-climate scenarios and are of general significance to conservation practitioners seeking to evaluate long-term effects of intra-specific hybridization including under recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信