无界域上各向异性 Orlicz-Sobolev 空间中的准线性椭圆问题

IF 1 3区 数学 Q1 MATHEMATICS
Karol Wroński
{"title":"无界域上各向异性 Orlicz-Sobolev 空间中的准线性椭圆问题","authors":"Karol Wroński","doi":"10.1007/s10231-024-01477-5","DOIUrl":null,"url":null,"abstract":"<p>We study a quasilinear elliptic problem <span>\\(-\\text {div} (\\nabla \\Phi (\\nabla u))+V(x)N'(u)=f(u)\\)</span> with anisotropic convex function <span>\\(\\Phi \\)</span> on the whole <span>\\(\\mathbb {R}^n\\)</span>. To prove existence of a nontrivial weak solution we use the mountain pass theorem for a functional defined on anisotropic Orlicz–Sobolev space <span>\\({{{\\,\\mathrm{\\textbf{W}}\\,}}^1}{{\\,\\mathrm{\\textbf{L}}\\,}}^{{\\Phi }} (\\mathbb {R}^n)\\)</span>. As the domain is unbounded we need to use Lions type lemma formulated for Young functions. Our assumptions broaden the class of considered functions <span>\\(\\Phi \\)</span> so our result generalizes earlier analogous results proved in isotropic setting.</p>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"10 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain\",\"authors\":\"Karol Wroński\",\"doi\":\"10.1007/s10231-024-01477-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a quasilinear elliptic problem <span>\\\\(-\\\\text {div} (\\\\nabla \\\\Phi (\\\\nabla u))+V(x)N'(u)=f(u)\\\\)</span> with anisotropic convex function <span>\\\\(\\\\Phi \\\\)</span> on the whole <span>\\\\(\\\\mathbb {R}^n\\\\)</span>. To prove existence of a nontrivial weak solution we use the mountain pass theorem for a functional defined on anisotropic Orlicz–Sobolev space <span>\\\\({{{\\\\,\\\\mathrm{\\\\textbf{W}}\\\\,}}^1}{{\\\\,\\\\mathrm{\\\\textbf{L}}\\\\,}}^{{\\\\Phi }} (\\\\mathbb {R}^n)\\\\)</span>. As the domain is unbounded we need to use Lions type lemma formulated for Young functions. Our assumptions broaden the class of considered functions <span>\\\\(\\\\Phi \\\\)</span> so our result generalizes earlier analogous results proved in isotropic setting.</p>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10231-024-01477-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10231-024-01477-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个在整个 \(\mathbb {R}^n\) 上具有各向异性凸函数 \(\Phi \)的准线性椭圆问题(-\text {div} (\nabla \Phi (\nabla u))+V(x)N'(u)=f(u))。为了证明非小弱解的存在性,我们使用了定义在各向异性奥利兹-索博列夫空间上的函数的山口定理({{\,\mathrm{textbf{W}}\,}^1}{{\,\mathrm{textbf{L}}\,}}^{\Phi }}.(\mathbb {R}^n)\).由于域是无界的,我们需要使用为 Young 函数制定的 Lions 型 Lemma。我们的假设拓宽了所考虑的函数类 \(\Phi \),因此我们的结果概括了之前在各向同性设置中证明的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain

Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain

We study a quasilinear elliptic problem \(-\text {div} (\nabla \Phi (\nabla u))+V(x)N'(u)=f(u)\) with anisotropic convex function \(\Phi \) on the whole \(\mathbb {R}^n\). To prove existence of a nontrivial weak solution we use the mountain pass theorem for a functional defined on anisotropic Orlicz–Sobolev space \({{{\,\mathrm{\textbf{W}}\,}}^1}{{\,\mathrm{\textbf{L}}\,}}^{{\Phi }} (\mathbb {R}^n)\). As the domain is unbounded we need to use Lions type lemma formulated for Young functions. Our assumptions broaden the class of considered functions \(\Phi \) so our result generalizes earlier analogous results proved in isotropic setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信