Shaneel Chandra, Lisa Bricknell, Sandrine Makiela, Sherie Bruce, Anjum Naweed
{"title":"火车车厢异味和室内空气质量危害:澳大利亚混合方法案例研究","authors":"Shaneel Chandra, Lisa Bricknell, Sandrine Makiela, Sherie Bruce, Anjum Naweed","doi":"10.1007/s40201-024-00908-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>This case study aimed to diagnose the cause(s) of a seasonal, and objectionable odour reported by travellers and drivers in the railway cars of Australian passenger trains. The research questions were to: (1) identify whether significant microbial colonisation was present within the air handling system of trains and causing the odours; to (2) identify other potential sources and; (3) remedial options for addressing the issue.</p><h3>Methods</h3><p>A mixed-methods, action research design was used adopted. Sections of the heating, ventilation, and air conditioning (HVAC) systems from odour-affected trains were swabbed for bacteria and fungi and examined for evidence of wear, fatigue and damage on-site and off-site. Insulation foam material extracted from the walls of affected trains was also subjected to a chemical assessment following exposure to varying humidity and temperature conditions in a climate simulator. This was accompanied by a qualitative sensory characterisation.</p><h3>Results</h3><p>Upon exposure to a variety of simulated temperature and humidity combinations to recreate the odour, volatile chemical compounds released from the insulation foam by water were identified as its likely cause. In addition, a range of potentially serious pathogenic and odour-causing microbes were cultured from the HVAC systems, although it is considered unlikely that bacterial colonies were the odour source.</p><h3>Conclusion</h3><p>The research has implications for the sanitising and maintenance policies for HVAC systems on public transport, especially when operating in humid environments. The sanitary imposition, especially in the wake of COVID-19 may be required to ensure the safety of the travelling public and drivers.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"22 2","pages":"503 - 517"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-024-00908-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Odour and indoor air quality hazards in railway cars: an Australian mixed methods case study\",\"authors\":\"Shaneel Chandra, Lisa Bricknell, Sandrine Makiela, Sherie Bruce, Anjum Naweed\",\"doi\":\"10.1007/s40201-024-00908-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>This case study aimed to diagnose the cause(s) of a seasonal, and objectionable odour reported by travellers and drivers in the railway cars of Australian passenger trains. The research questions were to: (1) identify whether significant microbial colonisation was present within the air handling system of trains and causing the odours; to (2) identify other potential sources and; (3) remedial options for addressing the issue.</p><h3>Methods</h3><p>A mixed-methods, action research design was used adopted. Sections of the heating, ventilation, and air conditioning (HVAC) systems from odour-affected trains were swabbed for bacteria and fungi and examined for evidence of wear, fatigue and damage on-site and off-site. Insulation foam material extracted from the walls of affected trains was also subjected to a chemical assessment following exposure to varying humidity and temperature conditions in a climate simulator. This was accompanied by a qualitative sensory characterisation.</p><h3>Results</h3><p>Upon exposure to a variety of simulated temperature and humidity combinations to recreate the odour, volatile chemical compounds released from the insulation foam by water were identified as its likely cause. In addition, a range of potentially serious pathogenic and odour-causing microbes were cultured from the HVAC systems, although it is considered unlikely that bacterial colonies were the odour source.</p><h3>Conclusion</h3><p>The research has implications for the sanitising and maintenance policies for HVAC systems on public transport, especially when operating in humid environments. The sanitary imposition, especially in the wake of COVID-19 may be required to ensure the safety of the travelling public and drivers.</p></div>\",\"PeriodicalId\":628,\"journal\":{\"name\":\"Journal of Environmental Health Science and Engineering\",\"volume\":\"22 2\",\"pages\":\"503 - 517\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40201-024-00908-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Health Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40201-024-00908-y\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-024-00908-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Odour and indoor air quality hazards in railway cars: an Australian mixed methods case study
Purpose
This case study aimed to diagnose the cause(s) of a seasonal, and objectionable odour reported by travellers and drivers in the railway cars of Australian passenger trains. The research questions were to: (1) identify whether significant microbial colonisation was present within the air handling system of trains and causing the odours; to (2) identify other potential sources and; (3) remedial options for addressing the issue.
Methods
A mixed-methods, action research design was used adopted. Sections of the heating, ventilation, and air conditioning (HVAC) systems from odour-affected trains were swabbed for bacteria and fungi and examined for evidence of wear, fatigue and damage on-site and off-site. Insulation foam material extracted from the walls of affected trains was also subjected to a chemical assessment following exposure to varying humidity and temperature conditions in a climate simulator. This was accompanied by a qualitative sensory characterisation.
Results
Upon exposure to a variety of simulated temperature and humidity combinations to recreate the odour, volatile chemical compounds released from the insulation foam by water were identified as its likely cause. In addition, a range of potentially serious pathogenic and odour-causing microbes were cultured from the HVAC systems, although it is considered unlikely that bacterial colonies were the odour source.
Conclusion
The research has implications for the sanitising and maintenance policies for HVAC systems on public transport, especially when operating in humid environments. The sanitary imposition, especially in the wake of COVID-19 may be required to ensure the safety of the travelling public and drivers.
期刊介绍:
Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management.
A broad outline of the journal''s scope includes:
-Water pollution and treatment
-Wastewater treatment and reuse
-Air control
-Soil remediation
-Noise and radiation control
-Environmental biotechnology and nanotechnology
-Food safety and hygiene