Mohamad Nurul Azman Mohammad Taib, Mohammad Mizanur Rahman, Jost Ruwoldt, I. Wayan Arnata, Dewi Sartika, Tawfik A. Salleh, M. Hazwan Hussin
{"title":"开发功能化木质素以实现可持续应用的最新进展","authors":"Mohamad Nurul Azman Mohammad Taib, Mohammad Mizanur Rahman, Jost Ruwoldt, I. Wayan Arnata, Dewi Sartika, Tawfik A. Salleh, M. Hazwan Hussin","doi":"10.1007/s10924-024-03338-x","DOIUrl":null,"url":null,"abstract":"<div><p>Lignin is classified as the second most abundantly available biopolymer after cellulose and as a main aromatic resource material. Lignin structure differs based on sources of origin and species of biomass with around 15–40% of lignin content based on dry weight. It is extracted from various types of lignocellulosic biomass through different pulping extraction methods. After extraction, lignin can be further functionalized through different chemical reactions to meet the requirements and specifications before being used in end products. Therefore, in this review paper, the details on extraction and the type of lignin, as well as chemical functionalization, are discussed. The chemical functionalization can be used to modify the lignin such through phenolic depolymerization or by other aromatic compounds, creating novel chemical active sites to impact a reactivity of lignin and through functionalization of hydroxyl functional group for enhancing its reactivity. Furthermore, the recent sustainable application of lignin was discussed in different fields such as nanocomposite, flame retardant, antioxidant, cosmetic, natural binder and emulsifier. This review hence provides a summary of the current stateoftheart in lignin technology and future outlook of potential application areas.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Progress in Development of Functionalized Lignin Towards Sustainable Applications\",\"authors\":\"Mohamad Nurul Azman Mohammad Taib, Mohammad Mizanur Rahman, Jost Ruwoldt, I. Wayan Arnata, Dewi Sartika, Tawfik A. Salleh, M. Hazwan Hussin\",\"doi\":\"10.1007/s10924-024-03338-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lignin is classified as the second most abundantly available biopolymer after cellulose and as a main aromatic resource material. Lignin structure differs based on sources of origin and species of biomass with around 15–40% of lignin content based on dry weight. It is extracted from various types of lignocellulosic biomass through different pulping extraction methods. After extraction, lignin can be further functionalized through different chemical reactions to meet the requirements and specifications before being used in end products. Therefore, in this review paper, the details on extraction and the type of lignin, as well as chemical functionalization, are discussed. The chemical functionalization can be used to modify the lignin such through phenolic depolymerization or by other aromatic compounds, creating novel chemical active sites to impact a reactivity of lignin and through functionalization of hydroxyl functional group for enhancing its reactivity. Furthermore, the recent sustainable application of lignin was discussed in different fields such as nanocomposite, flame retardant, antioxidant, cosmetic, natural binder and emulsifier. This review hence provides a summary of the current stateoftheart in lignin technology and future outlook of potential application areas.</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-024-03338-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03338-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Recent Progress in Development of Functionalized Lignin Towards Sustainable Applications
Lignin is classified as the second most abundantly available biopolymer after cellulose and as a main aromatic resource material. Lignin structure differs based on sources of origin and species of biomass with around 15–40% of lignin content based on dry weight. It is extracted from various types of lignocellulosic biomass through different pulping extraction methods. After extraction, lignin can be further functionalized through different chemical reactions to meet the requirements and specifications before being used in end products. Therefore, in this review paper, the details on extraction and the type of lignin, as well as chemical functionalization, are discussed. The chemical functionalization can be used to modify the lignin such through phenolic depolymerization or by other aromatic compounds, creating novel chemical active sites to impact a reactivity of lignin and through functionalization of hydroxyl functional group for enhancing its reactivity. Furthermore, the recent sustainable application of lignin was discussed in different fields such as nanocomposite, flame retardant, antioxidant, cosmetic, natural binder and emulsifier. This review hence provides a summary of the current stateoftheart in lignin technology and future outlook of potential application areas.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.