Benjamin Utzinger, Desh Deepak Dixit and Peter B. Lillehoj
{"title":"用于超灵敏电化学测量蛋白质生物标记物的微流控指动混合器,可用于床旁检测","authors":"Benjamin Utzinger, Desh Deepak Dixit and Peter B. Lillehoj","doi":"10.1039/D4LC00207E","DOIUrl":null,"url":null,"abstract":"<p >Current diagnostic tests for high sensitivity detection of protein biomarkers involve long incubation times or require bulky/expensive instrumentation, hindering their use for point-of-care testing. Here, we report a microfluidic electrochemical immunosensor that employs a unique finger-actuated mixer for rapid, ultrasensitive measurements of protein biomarkers. Mixing was implemented during the incubation steps, which accelerated biomolecular transport and promoted immunocomplex formation, leading to enhanced analytical sensitivity and a shortened detection time. Electrochemical measurements were performed using a handheld diagnostic device consisting of a smartphone and miniature potentiostat. Proof of principle was demonstrated by using this platform for quantitative measurements of C–X–C motif chemokine ligand 9 (CXCL9), a serological biomarker for autoimmune and inflammatory diseases, which could be detected in human plasma at concentrations as low as 4.7 pg mL<small><sup>−1</sup></small> in <25 min. The ability to rapidly detect protein biomarkers with high sensitivity in a point-of-care format makes this device a promising tool for diagnostic testing, particularly in resource-limited settings.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microfluidic finger-actuated mixer for ultrasensitive electrochemical measurements of protein biomarkers for point-of-care testing†\",\"authors\":\"Benjamin Utzinger, Desh Deepak Dixit and Peter B. Lillehoj\",\"doi\":\"10.1039/D4LC00207E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Current diagnostic tests for high sensitivity detection of protein biomarkers involve long incubation times or require bulky/expensive instrumentation, hindering their use for point-of-care testing. Here, we report a microfluidic electrochemical immunosensor that employs a unique finger-actuated mixer for rapid, ultrasensitive measurements of protein biomarkers. Mixing was implemented during the incubation steps, which accelerated biomolecular transport and promoted immunocomplex formation, leading to enhanced analytical sensitivity and a shortened detection time. Electrochemical measurements were performed using a handheld diagnostic device consisting of a smartphone and miniature potentiostat. Proof of principle was demonstrated by using this platform for quantitative measurements of C–X–C motif chemokine ligand 9 (CXCL9), a serological biomarker for autoimmune and inflammatory diseases, which could be detected in human plasma at concentrations as low as 4.7 pg mL<small><sup>−1</sup></small> in <25 min. The ability to rapidly detect protein biomarkers with high sensitivity in a point-of-care format makes this device a promising tool for diagnostic testing, particularly in resource-limited settings.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00207e\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00207e","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Microfluidic finger-actuated mixer for ultrasensitive electrochemical measurements of protein biomarkers for point-of-care testing†
Current diagnostic tests for high sensitivity detection of protein biomarkers involve long incubation times or require bulky/expensive instrumentation, hindering their use for point-of-care testing. Here, we report a microfluidic electrochemical immunosensor that employs a unique finger-actuated mixer for rapid, ultrasensitive measurements of protein biomarkers. Mixing was implemented during the incubation steps, which accelerated biomolecular transport and promoted immunocomplex formation, leading to enhanced analytical sensitivity and a shortened detection time. Electrochemical measurements were performed using a handheld diagnostic device consisting of a smartphone and miniature potentiostat. Proof of principle was demonstrated by using this platform for quantitative measurements of C–X–C motif chemokine ligand 9 (CXCL9), a serological biomarker for autoimmune and inflammatory diseases, which could be detected in human plasma at concentrations as low as 4.7 pg mL−1 in <25 min. The ability to rapidly detect protein biomarkers with high sensitivity in a point-of-care format makes this device a promising tool for diagnostic testing, particularly in resource-limited settings.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.