{"title":"基于田口方法的永磁风力发电机自循环氢气冷却系统优化设计","authors":"Gaojia Zhu;Yunhao Li;Longnv Li","doi":"10.30941/CESTEMS.2024.00024","DOIUrl":null,"url":null,"abstract":"With the continuous improvement of permanent magnet (PM) wind generators' capacity and power density, the design of reasonable and efficient cooling structures has become a focus. This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator. The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades, and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator. According to the structural parameters of the cooling system, the Taguchi method is used to decouple the structural variables. The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed, and the appropriate cooling structure scheme is determined.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579827","citationCount":"0","resultStr":"{\"title\":\"Design Optimization of a Self-Circulated Hydrogen Cooling System for a PM Wind Generator Based on Taguchi Method\",\"authors\":\"Gaojia Zhu;Yunhao Li;Longnv Li\",\"doi\":\"10.30941/CESTEMS.2024.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous improvement of permanent magnet (PM) wind generators' capacity and power density, the design of reasonable and efficient cooling structures has become a focus. This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator. The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades, and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator. According to the structural parameters of the cooling system, the Taguchi method is used to decouple the structural variables. The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed, and the appropriate cooling structure scheme is determined.\",\"PeriodicalId\":100229,\"journal\":{\"name\":\"CES Transactions on Electrical Machines and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579827\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CES Transactions on Electrical Machines and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10579827/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CES Transactions on Electrical Machines and Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10579827/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design Optimization of a Self-Circulated Hydrogen Cooling System for a PM Wind Generator Based on Taguchi Method
With the continuous improvement of permanent magnet (PM) wind generators' capacity and power density, the design of reasonable and efficient cooling structures has become a focus. This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator. The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades, and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator. According to the structural parameters of the cooling system, the Taguchi method is used to decouple the structural variables. The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed, and the appropriate cooling structure scheme is determined.