虚拟同步发电机的瞬态阻尼以增强电压骤降期间的同步稳定性

Shitao Sun;Yu Lei;Guowen Hao;Yi Lu;Jindong Liu;Zhaoxin Song;Jie Zhang
{"title":"虚拟同步发电机的瞬态阻尼以增强电压骤降期间的同步稳定性","authors":"Shitao Sun;Yu Lei;Guowen Hao;Yi Lu;Jindong Liu;Zhaoxin Song;Jie Zhang","doi":"10.30941/CESTEMS.2024.00021","DOIUrl":null,"url":null,"abstract":"Virtual synchronous generators (VSGs) are widely introduced to the renewable power generation, the variable-speed pumped storage units, and so on, as a promising grid-forming solution. It is noted that VSGs can provide virtual inertia for frequency support, but the larger inertia would worsen the synchronization stability, referring to keeping synchronization with the grid during voltage dips. Thus, this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips. It is revealed that the loss of synchronization (LOS) of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists. In order to enhance synchronization stability during voltage dips, the transient damping is proposed, which is generated by the frequency deviation in active power loop. Additionally, the proposed method can realize seamless switching between normal state and grid fault. Moreover, detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips. Finally, the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579824","citationCount":"0","resultStr":"{\"title\":\"Transient Damping of Virtual Synchronous Generator for Enhancing Synchronization Stability During Voltage Dips\",\"authors\":\"Shitao Sun;Yu Lei;Guowen Hao;Yi Lu;Jindong Liu;Zhaoxin Song;Jie Zhang\",\"doi\":\"10.30941/CESTEMS.2024.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual synchronous generators (VSGs) are widely introduced to the renewable power generation, the variable-speed pumped storage units, and so on, as a promising grid-forming solution. It is noted that VSGs can provide virtual inertia for frequency support, but the larger inertia would worsen the synchronization stability, referring to keeping synchronization with the grid during voltage dips. Thus, this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips. It is revealed that the loss of synchronization (LOS) of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists. In order to enhance synchronization stability during voltage dips, the transient damping is proposed, which is generated by the frequency deviation in active power loop. Additionally, the proposed method can realize seamless switching between normal state and grid fault. Moreover, detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips. Finally, the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method.\",\"PeriodicalId\":100229,\"journal\":{\"name\":\"CES Transactions on Electrical Machines and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579824\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CES Transactions on Electrical Machines and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10579824/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CES Transactions on Electrical Machines and Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10579824/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虚拟同步发电机(VSG)作为一种有前途的电网形成解决方案,被广泛引入可再生能源发电、变速抽水蓄能机组等领域。人们注意到,VSGs 可以为频率支持提供虚拟惯性,但较大的惯性会恶化同步稳定性,即在电压骤降时与电网保持同步。因此,本文提出了一种 VSG 瞬态阻尼方法,以增强电压暂降期间的同步稳定性。研究表明,VSG 的同步损失(LOS)总是伴随着正频率偏差,而当平衡点存在时,阻尼是消除 LOS 的关键因素。为了增强电压骤降期间的同步稳定性,提出了由有功功率环路频率偏差产生的瞬态阻尼。此外,所提出的方法还能实现正常状态和电网故障之间的无缝切换。此外,还给出了暂态阻尼增益的详细控制设计,以确保电压暂降期间不同惯性要求下的同步稳定性。最后,介绍了实验结果,以验证分析结果和改进的暂态阻尼方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient Damping of Virtual Synchronous Generator for Enhancing Synchronization Stability During Voltage Dips
Virtual synchronous generators (VSGs) are widely introduced to the renewable power generation, the variable-speed pumped storage units, and so on, as a promising grid-forming solution. It is noted that VSGs can provide virtual inertia for frequency support, but the larger inertia would worsen the synchronization stability, referring to keeping synchronization with the grid during voltage dips. Thus, this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips. It is revealed that the loss of synchronization (LOS) of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists. In order to enhance synchronization stability during voltage dips, the transient damping is proposed, which is generated by the frequency deviation in active power loop. Additionally, the proposed method can realize seamless switching between normal state and grid fault. Moreover, detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips. Finally, the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信