通过路径积分控制的离散时间随机 LQR 及其样本复杂性分析

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Apurva Patil;Grani A. Hanasusanto;Takashi Tanaka
{"title":"通过路径积分控制的离散时间随机 LQR 及其样本复杂性分析","authors":"Apurva Patil;Grani A. Hanasusanto;Takashi Tanaka","doi":"10.1109/LCSYS.2024.3413869","DOIUrl":null,"url":null,"abstract":"In this letter, we derive the path integral control algorithm to solve a discrete-time stochastic Linear Quadratic Regulator (LQR) problem and carry out its sample complexity analysis. While the stochastic LQR problem can be efficiently solved by the standard backward Riccati recursion, our primary focus in this letter is to establish the foundation for a sample complexity analysis of the path integral method when the analytical expressions of optimal control law and the cost are available. Specifically, we derive a bound on the error between the optimal LQR input and the input computed by the path integral method as a function of the sample size. Our analysis reveals that the sample size required exhibits a logarithmic dependence on the dimension of the control input. Lastly, we formulate a chance-constrained optimization problem whose solution quantifies the worst-case control performance of the path integral approach.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete-Time Stochastic LQR via Path Integral Control and Its Sample Complexity Analysis\",\"authors\":\"Apurva Patil;Grani A. Hanasusanto;Takashi Tanaka\",\"doi\":\"10.1109/LCSYS.2024.3413869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we derive the path integral control algorithm to solve a discrete-time stochastic Linear Quadratic Regulator (LQR) problem and carry out its sample complexity analysis. While the stochastic LQR problem can be efficiently solved by the standard backward Riccati recursion, our primary focus in this letter is to establish the foundation for a sample complexity analysis of the path integral method when the analytical expressions of optimal control law and the cost are available. Specifically, we derive a bound on the error between the optimal LQR input and the input computed by the path integral method as a function of the sample size. Our analysis reveals that the sample size required exhibits a logarithmic dependence on the dimension of the control input. Lastly, we formulate a chance-constrained optimization problem whose solution quantifies the worst-case control performance of the path integral approach.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10556579/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10556579/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们推导出了解决离散时间随机线性二次调节器(LQR)问题的路径积分控制算法,并对其进行了样本复杂度分析。虽然随机 LQR 问题可以通过标准的后向里卡蒂递推法高效求解,但我们在这封信中的主要重点是,在最佳控制律和代价的解析表达式可用的情况下,为路径积分法的样本复杂度分析奠定基础。具体来说,我们推导了最优 LQR 输入与路径积分法计算的输入之间的误差与样本量的函数关系。我们的分析表明,所需的样本量与控制输入的维度呈对数关系。最后,我们提出了一个机会约束优化问题,其解决方案可以量化路径积分法的最差控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete-Time Stochastic LQR via Path Integral Control and Its Sample Complexity Analysis
In this letter, we derive the path integral control algorithm to solve a discrete-time stochastic Linear Quadratic Regulator (LQR) problem and carry out its sample complexity analysis. While the stochastic LQR problem can be efficiently solved by the standard backward Riccati recursion, our primary focus in this letter is to establish the foundation for a sample complexity analysis of the path integral method when the analytical expressions of optimal control law and the cost are available. Specifically, we derive a bound on the error between the optimal LQR input and the input computed by the path integral method as a function of the sample size. Our analysis reveals that the sample size required exhibits a logarithmic dependence on the dimension of the control input. Lastly, we formulate a chance-constrained optimization problem whose solution quantifies the worst-case control performance of the path integral approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信