Vassilis Alimisis, Charis Aletraris, Nikolaos P Eleftheriou, Emmanouil Anastasios Serlis, Alex James, Paul P Sotiriadis
{"title":"用于糖尿病疾病预测的投票分类算法的低功耗模拟集成架构。","authors":"Vassilis Alimisis, Charis Aletraris, Nikolaos P Eleftheriou, Emmanouil Anastasios Serlis, Alex James, Paul P Sotiriadis","doi":"10.1109/TBCAS.2024.3421313","DOIUrl":null,"url":null,"abstract":"<p><p>A low-power (∼ 600nW), fully analog integrated architecture for a voting classification algorithm is introduced. It can effectively handle multiple-input features, maintaining exceptional levels of accuracy and with very low power consumption. The proposed architecture is based on a versatile Voting algorithm that selectively incorporates one of three key classification models: Bayes or Centroid, or, the Learning Vector Quantization model; all of which are implemented using Gaussian-likelihood and Euclidean distance function circuits, as well as a current comparison circuit. To evaluate the proposed architecture, a comprehensive comparison with popular analog classifiers is performed, using real-life diabetes dataset. All model architectures were trained using Python and compared with the software-based classifiers. The circuit implementations were performed using the TSMC 90 nm CMOS process technology and the Cadence IC Suite was utilized for the design, schematic and post-layout simulations. The proposed classifiers achieved sensitivity of ≥ 96.7% and specificity of ≥ 89.7%.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Power Analog Integrated Architecture of the Voting Classification Algorithm for Diabetes Disease Prediction.\",\"authors\":\"Vassilis Alimisis, Charis Aletraris, Nikolaos P Eleftheriou, Emmanouil Anastasios Serlis, Alex James, Paul P Sotiriadis\",\"doi\":\"10.1109/TBCAS.2024.3421313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A low-power (∼ 600nW), fully analog integrated architecture for a voting classification algorithm is introduced. It can effectively handle multiple-input features, maintaining exceptional levels of accuracy and with very low power consumption. The proposed architecture is based on a versatile Voting algorithm that selectively incorporates one of three key classification models: Bayes or Centroid, or, the Learning Vector Quantization model; all of which are implemented using Gaussian-likelihood and Euclidean distance function circuits, as well as a current comparison circuit. To evaluate the proposed architecture, a comprehensive comparison with popular analog classifiers is performed, using real-life diabetes dataset. All model architectures were trained using Python and compared with the software-based classifiers. The circuit implementations were performed using the TSMC 90 nm CMOS process technology and the Cadence IC Suite was utilized for the design, schematic and post-layout simulations. The proposed classifiers achieved sensitivity of ≥ 96.7% and specificity of ≥ 89.7%.</p>\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2024.3421313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3421313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种用于投票分类算法的低功耗(∼ 600nW)全模拟集成架构。它能有效处理多输入特征,保持极高的准确度,而且功耗极低。所提出的架构基于一种多功能投票算法,该算法有选择地结合了三种关键分类模型之一:所有这些都是通过高斯似然和欧氏距离函数电路以及电流比较电路实现的。为了评估所提出的架构,我们使用真实的糖尿病数据集与流行的模拟分类器进行了全面比较。所有模型架构都使用 Python 进行了训练,并与基于软件的分类器进行了比较。电路实现采用台积电 90 纳米 CMOS 工艺技术,并使用 Cadence IC Suite 进行设计、原理图和布局后仿真。建议的分类器灵敏度≥ 96.7%,特异度≥ 89.7%。
Low-Power Analog Integrated Architecture of the Voting Classification Algorithm for Diabetes Disease Prediction.
A low-power (∼ 600nW), fully analog integrated architecture for a voting classification algorithm is introduced. It can effectively handle multiple-input features, maintaining exceptional levels of accuracy and with very low power consumption. The proposed architecture is based on a versatile Voting algorithm that selectively incorporates one of three key classification models: Bayes or Centroid, or, the Learning Vector Quantization model; all of which are implemented using Gaussian-likelihood and Euclidean distance function circuits, as well as a current comparison circuit. To evaluate the proposed architecture, a comprehensive comparison with popular analog classifiers is performed, using real-life diabetes dataset. All model architectures were trained using Python and compared with the software-based classifiers. The circuit implementations were performed using the TSMC 90 nm CMOS process technology and the Cadence IC Suite was utilized for the design, schematic and post-layout simulations. The proposed classifiers achieved sensitivity of ≥ 96.7% and specificity of ≥ 89.7%.