基于纳米线阵列扫描电子显微镜图像的机器学习纳米线分类方法。

Open research Europe Pub Date : 2024-06-28 eCollection Date: 2024-01-01 DOI:10.12688/openreseurope.16696.2
Enrico Brugnolotto, Preslav Aleksandrov, Marilyne Sousa, Vihar Georgiev
{"title":"基于纳米线阵列扫描电子显微镜图像的机器学习纳米线分类方法。","authors":"Enrico Brugnolotto, Preslav Aleksandrov, Marilyne Sousa, Vihar Georgiev","doi":"10.12688/openreseurope.16696.2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This article introduces an innovative classification methodology to identify nanowires within scanning electron microscope images.</p><p><strong>Methods: </strong>Our approach employs advanced image manipulation techniques in conjunction with machine learning-based recognition algorithms. The effectiveness of our proposed method is demonstrated through its application to the categorization of scanning electron microscopy images depicting nanowires arrays.</p><p><strong>Results: </strong>The method's capability to isolate and distinguish individual nanowires within an array is the primary factor in the observed accuracy. The foundational data set for model training comprises scanning electron microscopy images featuring 240 III-V nanowire arrays grown with metal organic chemical vapor deposition on silicon substrates. Each of these arrays consists of 66 nanowires. The results underscore the model's proficiency in discerning distinct wire configurations and detecting parasitic crystals. Our approach yields an average F1 score of 0.91, indicating high precision and recall.</p><p><strong>Conclusions: </strong>Such a high level of performance and accuracy of ML methods demonstrate the viability of our technique not only for academic but also for practical commercial implementation and usage.</p>","PeriodicalId":74359,"journal":{"name":"Open research Europe","volume":"4 ","pages":"43"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217720/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Inspired Nanowire Classification Method based on Nanowire Array Scanning Electron Microscope Images.\",\"authors\":\"Enrico Brugnolotto, Preslav Aleksandrov, Marilyne Sousa, Vihar Georgiev\",\"doi\":\"10.12688/openreseurope.16696.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This article introduces an innovative classification methodology to identify nanowires within scanning electron microscope images.</p><p><strong>Methods: </strong>Our approach employs advanced image manipulation techniques in conjunction with machine learning-based recognition algorithms. The effectiveness of our proposed method is demonstrated through its application to the categorization of scanning electron microscopy images depicting nanowires arrays.</p><p><strong>Results: </strong>The method's capability to isolate and distinguish individual nanowires within an array is the primary factor in the observed accuracy. The foundational data set for model training comprises scanning electron microscopy images featuring 240 III-V nanowire arrays grown with metal organic chemical vapor deposition on silicon substrates. Each of these arrays consists of 66 nanowires. The results underscore the model's proficiency in discerning distinct wire configurations and detecting parasitic crystals. Our approach yields an average F1 score of 0.91, indicating high precision and recall.</p><p><strong>Conclusions: </strong>Such a high level of performance and accuracy of ML methods demonstrate the viability of our technique not only for academic but also for practical commercial implementation and usage.</p>\",\"PeriodicalId\":74359,\"journal\":{\"name\":\"Open research Europe\",\"volume\":\"4 \",\"pages\":\"43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217720/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open research Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/openreseurope.16696.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open research Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/openreseurope.16696.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:本文介绍了在扫描电子显微镜图像中识别纳米线的创新分类方法:本文介绍了一种在扫描电子显微镜图像中识别纳米线的创新分类方法:我们的方法采用了先进的图像处理技术和基于机器学习的识别算法。我们提出的方法通过应用于描述纳米线阵列的扫描电子显微镜图像的分类,证明了其有效性:结果:该方法在阵列中分离和区分单个纳米线的能力是观察到的准确性的主要因素。用于模型训练的基础数据集由扫描电子显微镜图像组成,其中包含 240 个在硅基底上通过金属有机化学气相沉积法生长的 III-V 纳米线阵列。每个阵列由 66 根纳米线组成。结果表明,该模型在辨别不同的导线配置和检测寄生晶体方面非常熟练。我们的方法得出的平均 F1 分数为 0.91,表明精确度和召回率都很高:ML 方法如此高的性能和准确性证明了我们的技术不仅在学术上,而且在实际商业实施和使用中都是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Inspired Nanowire Classification Method based on Nanowire Array Scanning Electron Microscope Images.

Background: This article introduces an innovative classification methodology to identify nanowires within scanning electron microscope images.

Methods: Our approach employs advanced image manipulation techniques in conjunction with machine learning-based recognition algorithms. The effectiveness of our proposed method is demonstrated through its application to the categorization of scanning electron microscopy images depicting nanowires arrays.

Results: The method's capability to isolate and distinguish individual nanowires within an array is the primary factor in the observed accuracy. The foundational data set for model training comprises scanning electron microscopy images featuring 240 III-V nanowire arrays grown with metal organic chemical vapor deposition on silicon substrates. Each of these arrays consists of 66 nanowires. The results underscore the model's proficiency in discerning distinct wire configurations and detecting parasitic crystals. Our approach yields an average F1 score of 0.91, indicating high precision and recall.

Conclusions: Such a high level of performance and accuracy of ML methods demonstrate the viability of our technique not only for academic but also for practical commercial implementation and usage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信