低成本、低功耗的诱导隧道场效应晶体管纳米片集成。

0 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jyi-Tsong Lin, Chia-Yo Kuo
{"title":"低成本、低功耗的诱导隧道场效应晶体管纳米片集成。","authors":"Jyi-Tsong Lin, Chia-Yo Kuo","doi":"10.1186/s11671-024-04036-2","DOIUrl":null,"url":null,"abstract":"<p><p>Nanosheet transistors are poised to become the preferred choice for the next generation of smaller-sized devices in the future. To address the future demand for high-performance and low-power computing applications, this study proposes a nanosheet structure with a vertically stacked design, featuring a high I<sub>ON</sub>/I<sub>OFF</sub> ratio. This Nanosheet design is combined with an induced tunnel field-effect transistor. By utilizing SiGe with a carrier mobility three times that of Si and employing a line tunneling mechanism, the research successfully achieves superior Band to Band characteristics, resulting in improved switching behavior and a lower Subthreshold Swing (SS). Comparative studies were conducted on three TFET types: Nanosheet PIN TFET, Nanosheet Schottky iTFET, and Fin iTFET. Results show that the Nanosheet PIN TFET has a higher I<sub>ON</sub>/I<sub>OFF</sub> ratio but poorer SSavg values at 47.63 mV/dec compared to the others. However, with a SiGe Body thickness of 3 nm, both Nanosheet iTFET and Fin iTFET exhibit higher I<sub>ON</sub>/I<sub>OFF</sub> ratios and superior SSavg values at 17.64 mV/dec. These findings suggest the potential of Nanosheet iTFET and Fin iTFET for low-power, lower thermal budgets, and fast-switching applications.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"108"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219690/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanosheet integration of induced tunnel field-effect transistor with lower cost and lower power.\",\"authors\":\"Jyi-Tsong Lin, Chia-Yo Kuo\",\"doi\":\"10.1186/s11671-024-04036-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanosheet transistors are poised to become the preferred choice for the next generation of smaller-sized devices in the future. To address the future demand for high-performance and low-power computing applications, this study proposes a nanosheet structure with a vertically stacked design, featuring a high I<sub>ON</sub>/I<sub>OFF</sub> ratio. This Nanosheet design is combined with an induced tunnel field-effect transistor. By utilizing SiGe with a carrier mobility three times that of Si and employing a line tunneling mechanism, the research successfully achieves superior Band to Band characteristics, resulting in improved switching behavior and a lower Subthreshold Swing (SS). Comparative studies were conducted on three TFET types: Nanosheet PIN TFET, Nanosheet Schottky iTFET, and Fin iTFET. Results show that the Nanosheet PIN TFET has a higher I<sub>ON</sub>/I<sub>OFF</sub> ratio but poorer SSavg values at 47.63 mV/dec compared to the others. However, with a SiGe Body thickness of 3 nm, both Nanosheet iTFET and Fin iTFET exhibit higher I<sub>ON</sub>/I<sub>OFF</sub> ratios and superior SSavg values at 17.64 mV/dec. These findings suggest the potential of Nanosheet iTFET and Fin iTFET for low-power, lower thermal budgets, and fast-switching applications.</p>\",\"PeriodicalId\":72828,\"journal\":{\"name\":\"Discover nano\",\"volume\":\"19 1\",\"pages\":\"108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219690/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover nano\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s11671-024-04036-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-024-04036-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米片晶体管有望成为未来下一代小型设备的首选。为了满足未来高性能和低功耗计算应用的需求,本研究提出了一种垂直堆叠设计的纳米片结构,具有高离子/离子交换比的特点。这种纳米片设计与诱导隧道场效应晶体管相结合。通过利用载流子迁移率是硅三倍的锗硅,并采用线隧道机制,该研究成功地实现了卓越的带间特性,从而改善了开关行为并降低了次阈值波动(SS)。我们对三种 TFET 类型进行了比较研究:纳米片 PIN TFET、纳米片肖特基 iTFET 和鳍式 iTFET。结果显示,纳米片 PIN TFET 的 ION/IOFF 比值较高,但 SSavg 值较低,为 47.63 mV/dec。然而,在硅锗体厚度为 3 nm 时,纳米片 iTFET 和鳍式 iTFET 都显示出更高的 ION/IOFF 比和更优越的 SSavg 值(17.64 mV/dec)。这些发现表明,纳米片 iTFET 和鳍式 iTFET 在低功耗、低热预算和快速开关应用方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanosheet integration of induced tunnel field-effect transistor with lower cost and lower power.

Nanosheet integration of induced tunnel field-effect transistor with lower cost and lower power.

Nanosheet transistors are poised to become the preferred choice for the next generation of smaller-sized devices in the future. To address the future demand for high-performance and low-power computing applications, this study proposes a nanosheet structure with a vertically stacked design, featuring a high ION/IOFF ratio. This Nanosheet design is combined with an induced tunnel field-effect transistor. By utilizing SiGe with a carrier mobility three times that of Si and employing a line tunneling mechanism, the research successfully achieves superior Band to Band characteristics, resulting in improved switching behavior and a lower Subthreshold Swing (SS). Comparative studies were conducted on three TFET types: Nanosheet PIN TFET, Nanosheet Schottky iTFET, and Fin iTFET. Results show that the Nanosheet PIN TFET has a higher ION/IOFF ratio but poorer SSavg values at 47.63 mV/dec compared to the others. However, with a SiGe Body thickness of 3 nm, both Nanosheet iTFET and Fin iTFET exhibit higher ION/IOFF ratios and superior SSavg values at 17.64 mV/dec. These findings suggest the potential of Nanosheet iTFET and Fin iTFET for low-power, lower thermal budgets, and fast-switching applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信