结合部分真实发现保证程序。

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Ningning Xu, Aldo Solari, Jelle J. Goeman
{"title":"结合部分真实发现保证程序。","authors":"Ningning Xu,&nbsp;Aldo Solari,&nbsp;Jelle J. Goeman","doi":"10.1002/bimj.202300075","DOIUrl":null,"url":null,"abstract":"<p>Closed testing has recently been shown to be optimal for simultaneous true discovery proportion control. It is, however, challenging to construct true discovery guarantee procedures in such a way that it focuses power on some feature sets chosen by users based on their specific interest or expertise. We propose a procedure that allows users to target power on prespecified feature sets, that is, “focus sets.” Still, the method also allows inference for feature sets chosen post hoc, that is, “nonfocus sets,” for which we deduce a true discovery lower confidence bound by interpolation. Our procedure is built from partial true discovery guarantee procedures combined with Holm's procedure and is a conservative shortcut to the closed testing procedure. A simulation study confirms that the statistical power of our method is relatively high for focus sets, at the cost of power for nonfocus sets, as desired. In addition, we investigate its power property for sets with specific structures, for example, trees and directed acyclic graphs. We also compare our method with AdaFilter in the context of replicability analysis. The application of our method is illustrated with a gene ontology analysis in gene expression data.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300075","citationCount":"0","resultStr":"{\"title\":\"Combining Partial True Discovery Guarantee Procedures\",\"authors\":\"Ningning Xu,&nbsp;Aldo Solari,&nbsp;Jelle J. Goeman\",\"doi\":\"10.1002/bimj.202300075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Closed testing has recently been shown to be optimal for simultaneous true discovery proportion control. It is, however, challenging to construct true discovery guarantee procedures in such a way that it focuses power on some feature sets chosen by users based on their specific interest or expertise. We propose a procedure that allows users to target power on prespecified feature sets, that is, “focus sets.” Still, the method also allows inference for feature sets chosen post hoc, that is, “nonfocus sets,” for which we deduce a true discovery lower confidence bound by interpolation. Our procedure is built from partial true discovery guarantee procedures combined with Holm's procedure and is a conservative shortcut to the closed testing procedure. A simulation study confirms that the statistical power of our method is relatively high for focus sets, at the cost of power for nonfocus sets, as desired. In addition, we investigate its power property for sets with specific structures, for example, trees and directed acyclic graphs. We also compare our method with AdaFilter in the context of replicability analysis. The application of our method is illustrated with a gene ontology analysis in gene expression data.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300075\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300075","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,封闭测试是同时进行真实发现比例控制的最佳方法。然而,如何构建真正的发现保证程序,使用户根据自己的兴趣或专长选择的特征集集中功率,是一项挑战。我们提出了一种程序,允许用户将功率集中在预先指定的特征集上,即 "重点集"。此外,该方法还允许推断临时选择的特征集,即 "非重点集",我们通过内插法推断出真实发现的置信度下限。我们的程序是由部分真实发现保证程序与霍尔姆程序相结合建立的,是封闭测试程序的保守捷径。模拟研究证实,我们的方法对焦点集的统计能力相对较高,但对非焦点集的统计能力却不如人意。此外,我们还研究了具有特定结构的集合(如树和有向无环图)的统计能力特性。在可复制性分析方面,我们还将我们的方法与 AdaFilter 进行了比较。我们以基因表达数据中的基因本体分析为例,说明了我们方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combining Partial True Discovery Guarantee Procedures

Combining Partial True Discovery Guarantee Procedures

Closed testing has recently been shown to be optimal for simultaneous true discovery proportion control. It is, however, challenging to construct true discovery guarantee procedures in such a way that it focuses power on some feature sets chosen by users based on their specific interest or expertise. We propose a procedure that allows users to target power on prespecified feature sets, that is, “focus sets.” Still, the method also allows inference for feature sets chosen post hoc, that is, “nonfocus sets,” for which we deduce a true discovery lower confidence bound by interpolation. Our procedure is built from partial true discovery guarantee procedures combined with Holm's procedure and is a conservative shortcut to the closed testing procedure. A simulation study confirms that the statistical power of our method is relatively high for focus sets, at the cost of power for nonfocus sets, as desired. In addition, we investigate its power property for sets with specific structures, for example, trees and directed acyclic graphs. We also compare our method with AdaFilter in the context of replicability analysis. The application of our method is illustrated with a gene ontology analysis in gene expression data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信