{"title":"巨戈隆对黄瓜中多酚氧化酶影响的综合研究:体外实验与计算对接和动力学启示。","authors":"İsmail Kocaçalışkan, Şenay Vural Korkut, Emre Aktaş, Merve Yalçın, Nehir Özdemir Özgentürk","doi":"10.1111/ppl.14420","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the impact of juglone on cucumber (Cucumis sativus cv. Beith Alpha), scrutinizing its effects on seed germination, growth, and the polyphenol oxidase (PPO) enzyme's activity and gene expression. Employing concentrations ranging from 0.01 to 0.5 mM, we found juglone's effects to be concentration-dependent. At lower concentrations (0.01 and 0.1 mM), juglone promoted root and shoot growth along with germination, whereas higher concentrations (0.25 and 0.5 mM) exerted inhibitory effects, delineating a threshold for its allelopathic influence. Notably, PPO activity surged, especially at 0.5 mM in roots, hinting at oxidative stress involvement. Real-time PCR unveiled that juglone modulates PPO gene expression in cotyledons, peaking at 0.1 mM and diminishing at elevated levels. Correlation analyses elucidated a positive link between juglone-induced root growth and cotyledon PPO gene expression but a negative correlation with heightened root enzyme activity. Additionally, germination percentage inversely correlated with root PPO activity, while PPO activities positively associated with dopa and catechol substrates in both roots and cotyledons. Molecular docking studies revealed juglone's selective interactions with PPO's B chain, suggesting regulatory impacts. Protein interaction assessments highlighted juglone's influence on amino acid metabolism, and molecular dynamics indicated juglone's stronger, more stable binding to PPO, inferring potential alterations in enzyme function and stability. Conclusively, our findings elucidate juglone's dose-dependent physiological and biochemical shifts in cucumber plants, offering insights into its role in plant growth, stress response, and metabolic modulation.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive Study of Juglone's Effect on Polyphenol Oxidase in Cucumber: In Vitro Experiments and Computational Docking and Dynamics Insights.\",\"authors\":\"İsmail Kocaçalışkan, Şenay Vural Korkut, Emre Aktaş, Merve Yalçın, Nehir Özdemir Özgentürk\",\"doi\":\"10.1111/ppl.14420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the impact of juglone on cucumber (Cucumis sativus cv. Beith Alpha), scrutinizing its effects on seed germination, growth, and the polyphenol oxidase (PPO) enzyme's activity and gene expression. Employing concentrations ranging from 0.01 to 0.5 mM, we found juglone's effects to be concentration-dependent. At lower concentrations (0.01 and 0.1 mM), juglone promoted root and shoot growth along with germination, whereas higher concentrations (0.25 and 0.5 mM) exerted inhibitory effects, delineating a threshold for its allelopathic influence. Notably, PPO activity surged, especially at 0.5 mM in roots, hinting at oxidative stress involvement. Real-time PCR unveiled that juglone modulates PPO gene expression in cotyledons, peaking at 0.1 mM and diminishing at elevated levels. Correlation analyses elucidated a positive link between juglone-induced root growth and cotyledon PPO gene expression but a negative correlation with heightened root enzyme activity. Additionally, germination percentage inversely correlated with root PPO activity, while PPO activities positively associated with dopa and catechol substrates in both roots and cotyledons. Molecular docking studies revealed juglone's selective interactions with PPO's B chain, suggesting regulatory impacts. Protein interaction assessments highlighted juglone's influence on amino acid metabolism, and molecular dynamics indicated juglone's stronger, more stable binding to PPO, inferring potential alterations in enzyme function and stability. Conclusively, our findings elucidate juglone's dose-dependent physiological and biochemical shifts in cucumber plants, offering insights into its role in plant growth, stress response, and metabolic modulation.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.14420\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14420","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了丁香酮对黄瓜(Cucumis sativus cv. Beith Alpha)的影响,仔细研究了它对种子萌发、生长以及多酚氧化酶(PPO)活性和基因表达的影响。在使用 0.01 至 0.5 mM 的浓度时,我们发现丁香酮的作用与浓度有关。在较低浓度(0.01 和 0.1 mM)下,丁螺环酮能促进根和芽的生长以及萌发,而较高浓度(0.25 和 0.5 mM)则会产生抑制作用,这就为其等位病理学影响划定了一个阈值。值得注意的是,根部的 PPO 活性激增,尤其是在 0.5 mM 浓度下,这表明氧化应激参与其中。实时聚合酶链式反应(Real-time PCR)揭示了丁香酮对子叶中 PPO 基因表达的调节作用,在 0.1 mM 时达到峰值,在水平升高时减弱。相关分析表明,丁螺环酮诱导的根系生长与子叶 PPO 基因表达之间呈正相关,但与根系酶活性的提高呈负相关。此外,发芽率与根部 PPO 活性成反比,而根部和子叶中的 PPO 活性与多巴和儿茶酚底物成正比。分子对接研究显示,丁香酮与 PPO 的 B 链具有选择性相互作用,这表明丁香酮具有调节作用。蛋白质相互作用评估强调了丁香酮对氨基酸代谢的影响,分子动力学研究表明丁香酮与 PPO 的结合更强、更稳定,从而推断出可能会改变酶的功能和稳定性。总之,我们的研究结果阐明了丁螺环酮在黄瓜植物中剂量依赖性的生理生化变化,为我们深入了解丁螺环酮在植物生长、胁迫响应和代谢调节中的作用提供了依据。
A comprehensive Study of Juglone's Effect on Polyphenol Oxidase in Cucumber: In Vitro Experiments and Computational Docking and Dynamics Insights.
This study explores the impact of juglone on cucumber (Cucumis sativus cv. Beith Alpha), scrutinizing its effects on seed germination, growth, and the polyphenol oxidase (PPO) enzyme's activity and gene expression. Employing concentrations ranging from 0.01 to 0.5 mM, we found juglone's effects to be concentration-dependent. At lower concentrations (0.01 and 0.1 mM), juglone promoted root and shoot growth along with germination, whereas higher concentrations (0.25 and 0.5 mM) exerted inhibitory effects, delineating a threshold for its allelopathic influence. Notably, PPO activity surged, especially at 0.5 mM in roots, hinting at oxidative stress involvement. Real-time PCR unveiled that juglone modulates PPO gene expression in cotyledons, peaking at 0.1 mM and diminishing at elevated levels. Correlation analyses elucidated a positive link between juglone-induced root growth and cotyledon PPO gene expression but a negative correlation with heightened root enzyme activity. Additionally, germination percentage inversely correlated with root PPO activity, while PPO activities positively associated with dopa and catechol substrates in both roots and cotyledons. Molecular docking studies revealed juglone's selective interactions with PPO's B chain, suggesting regulatory impacts. Protein interaction assessments highlighted juglone's influence on amino acid metabolism, and molecular dynamics indicated juglone's stronger, more stable binding to PPO, inferring potential alterations in enzyme function and stability. Conclusively, our findings elucidate juglone's dose-dependent physiological and biochemical shifts in cucumber plants, offering insights into its role in plant growth, stress response, and metabolic modulation.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.