磷脂酰乙醇胺在稻瘟病真菌的附属体形成过程中连接了铁突变和自噬。

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES
Qiao Liu, Ruhui Long, Chaoxiang Lin, Xinping Bi, Zhibin Liang, Yi Zhen Deng
{"title":"磷脂酰乙醇胺在稻瘟病真菌的附属体形成过程中连接了铁突变和自噬。","authors":"Qiao Liu, Ruhui Long, Chaoxiang Lin, Xinping Bi, Zhibin Liang, Yi Zhen Deng","doi":"10.1111/mpp.13489","DOIUrl":null,"url":null,"abstract":"<p><p>A cell death pathway, ferroptosis, occurs in conidial cells and is critical for formation and function of the infection structure, the appressorium, in the rice blast fungus Magnaporthe oryzae. In this study, we identified an orthologous lysophosphatidic acid acyltransferase (Lpaat) acting at upstream of phosphatidylethanolamines (PEs) biosynthesis and which is required for such fungal ferroptosis and pathogenicity. Two PE species, DOPE and SLPE, that depend on Lpaat function for production were sufficient for induction of lipid peroxidation and the consequent ferroptosis, thus positively regulating fungal pathogenicity. On the other hand, both DOPE and SLPE positively regulated autophagy. Loss of the LPAAT gene led to a decrease in the lipidated form of the autophagy protein Atg8, which is probably responsible for the autophagy defect of the lpaatΔ mutant. GFP-Lpaat was mostly localized on the membrane of lipid droplets (LDs) that were stained by the fluorescent dye monodansylpentane (MDH), suggesting that LDs serve as a source of lipids for membrane PE biosynthesis and probably as a membrane source of autophagosome. Overall, our results reveal novel intracellular membrane-bound organelle dynamics based on Lpaat-mediated lipid metabolism, providing a temporal and spatial link of ferroptosis and autophagy.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13489"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219472/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phosphatidylethanolamines link ferroptosis and autophagy during appressorium formation of rice blast fungus.\",\"authors\":\"Qiao Liu, Ruhui Long, Chaoxiang Lin, Xinping Bi, Zhibin Liang, Yi Zhen Deng\",\"doi\":\"10.1111/mpp.13489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A cell death pathway, ferroptosis, occurs in conidial cells and is critical for formation and function of the infection structure, the appressorium, in the rice blast fungus Magnaporthe oryzae. In this study, we identified an orthologous lysophosphatidic acid acyltransferase (Lpaat) acting at upstream of phosphatidylethanolamines (PEs) biosynthesis and which is required for such fungal ferroptosis and pathogenicity. Two PE species, DOPE and SLPE, that depend on Lpaat function for production were sufficient for induction of lipid peroxidation and the consequent ferroptosis, thus positively regulating fungal pathogenicity. On the other hand, both DOPE and SLPE positively regulated autophagy. Loss of the LPAAT gene led to a decrease in the lipidated form of the autophagy protein Atg8, which is probably responsible for the autophagy defect of the lpaatΔ mutant. GFP-Lpaat was mostly localized on the membrane of lipid droplets (LDs) that were stained by the fluorescent dye monodansylpentane (MDH), suggesting that LDs serve as a source of lipids for membrane PE biosynthesis and probably as a membrane source of autophagosome. Overall, our results reveal novel intracellular membrane-bound organelle dynamics based on Lpaat-mediated lipid metabolism, providing a temporal and spatial link of ferroptosis and autophagy.</p>\",\"PeriodicalId\":18763,\"journal\":{\"name\":\"Molecular plant pathology\",\"volume\":\"25 7\",\"pages\":\"e13489\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219472/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular plant pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/mpp.13489\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.13489","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在稻瘟病真菌 Magnaporthe oryzae 中,分生孢子细胞中存在一种细胞死亡途径--铁突变,这种途径对于感染结构--附着体--的形成和功能至关重要。在这项研究中,我们发现了一种同源的溶血磷脂酸酰基转移酶(Lpaat),它作用于磷脂酰乙醇胺(PEs)生物合成的上游,是这种真菌铁突变和致病性所必需的。依赖 Lpaat 功能产生的两种 PE(DOPE 和 SLPE)足以诱导脂质过氧化反应和随之而来的铁变态反应,从而对真菌的致病性起到积极的调节作用。另一方面,DOPE 和 SLPE 对自噬有积极的调节作用。LPAAT 基因缺失导致自噬蛋白 Atg8 的脂化形式减少,这可能是 lpaatΔ 突变体自噬缺陷的原因。GFP-Lpaat主要定位于被荧光染料单丹戊烷(MDH)染色的脂滴(LDs)膜上,这表明LDs是膜PE生物合成的脂质来源,也可能是自噬体的膜来源。总之,我们的研究结果揭示了基于 Lpaat 介导的脂质代谢的新型细胞内膜结合细胞器动力学,为铁突变和自噬提供了时空联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phosphatidylethanolamines link ferroptosis and autophagy during appressorium formation of rice blast fungus.

A cell death pathway, ferroptosis, occurs in conidial cells and is critical for formation and function of the infection structure, the appressorium, in the rice blast fungus Magnaporthe oryzae. In this study, we identified an orthologous lysophosphatidic acid acyltransferase (Lpaat) acting at upstream of phosphatidylethanolamines (PEs) biosynthesis and which is required for such fungal ferroptosis and pathogenicity. Two PE species, DOPE and SLPE, that depend on Lpaat function for production were sufficient for induction of lipid peroxidation and the consequent ferroptosis, thus positively regulating fungal pathogenicity. On the other hand, both DOPE and SLPE positively regulated autophagy. Loss of the LPAAT gene led to a decrease in the lipidated form of the autophagy protein Atg8, which is probably responsible for the autophagy defect of the lpaatΔ mutant. GFP-Lpaat was mostly localized on the membrane of lipid droplets (LDs) that were stained by the fluorescent dye monodansylpentane (MDH), suggesting that LDs serve as a source of lipids for membrane PE biosynthesis and probably as a membrane source of autophagosome. Overall, our results reveal novel intracellular membrane-bound organelle dynamics based on Lpaat-mediated lipid metabolism, providing a temporal and spatial link of ferroptosis and autophagy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信