{"title":"长期暴露在超重力环境中会增加拟南芥茎干中细胞的数量和大小,并促进木质素沉积。","authors":"Hironori Shinohara, Masaki Muramoto, Daisuke Tamaoki, Hiroyuki Kamachi, Hiroshi Inoue, Atsushi Kume, Ichirou Karahara","doi":"10.1007/s10265-024-01556-x","DOIUrl":null,"url":null,"abstract":"<p><p>We have performed a lab-based hypergravity cultivation experiment using a centrifuge equipped with a lighting system and examined long-term effects of hypergravity on the development of the main axis of the Arabidopsis (Arabidopsis thaliana (L.) Heynh.) primary inflorescence, which comprises the rachis and peduncle, collectively referred to as the main stem for simplicity. Plants grown under 1 × g (gravitational acceleration on Earth) conditions for 20-23 days and having the first visible flower bud were exposed to hypergravity at 8 × g for 10 days. We analyzed the effect of prolonged hypergravity conditions on growth, lignin deposition, and tissue anatomy of the main stem. As a result, the length of the main stem decreased and cross-sectional area, dry mass per unit length, cell number, and lignin content of the main stem significantly increased under hypergravity. Lignin content in the rosette leaves also increased when they were exposed to hypergravity during their development. Except for interfascicular fibers, cross-sectional areas of the tissues composing the internode significantly increased under hypergravity in most types of the tissues in the basal part than the apical part of the main stem, indicating that the effect of hypergravity is more pronounced in the basal part than the apical part. The number of cells in the fascicular cambium and xylem significantly increased under hypergravity both in the apical and basal internodes of the main stem, indicating a possibility that hypergravity stimulates procambium activity to produce xylem element more than phloem element. The main stem was suggested to be strengthened through changes in its morphological characteristics as well as lignin deposition under prolonged hypergravity conditions.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"927-937"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prolonged exposure to hypergravity increases number and size of cells and enhances lignin deposition in the stem of Arabidopsis thaliana.\",\"authors\":\"Hironori Shinohara, Masaki Muramoto, Daisuke Tamaoki, Hiroyuki Kamachi, Hiroshi Inoue, Atsushi Kume, Ichirou Karahara\",\"doi\":\"10.1007/s10265-024-01556-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have performed a lab-based hypergravity cultivation experiment using a centrifuge equipped with a lighting system and examined long-term effects of hypergravity on the development of the main axis of the Arabidopsis (Arabidopsis thaliana (L.) Heynh.) primary inflorescence, which comprises the rachis and peduncle, collectively referred to as the main stem for simplicity. Plants grown under 1 × g (gravitational acceleration on Earth) conditions for 20-23 days and having the first visible flower bud were exposed to hypergravity at 8 × g for 10 days. We analyzed the effect of prolonged hypergravity conditions on growth, lignin deposition, and tissue anatomy of the main stem. As a result, the length of the main stem decreased and cross-sectional area, dry mass per unit length, cell number, and lignin content of the main stem significantly increased under hypergravity. Lignin content in the rosette leaves also increased when they were exposed to hypergravity during their development. Except for interfascicular fibers, cross-sectional areas of the tissues composing the internode significantly increased under hypergravity in most types of the tissues in the basal part than the apical part of the main stem, indicating that the effect of hypergravity is more pronounced in the basal part than the apical part. The number of cells in the fascicular cambium and xylem significantly increased under hypergravity both in the apical and basal internodes of the main stem, indicating a possibility that hypergravity stimulates procambium activity to produce xylem element more than phloem element. The main stem was suggested to be strengthened through changes in its morphological characteristics as well as lignin deposition under prolonged hypergravity conditions.</p>\",\"PeriodicalId\":16813,\"journal\":{\"name\":\"Journal of Plant Research\",\"volume\":\" \",\"pages\":\"927-937\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10265-024-01556-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01556-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Prolonged exposure to hypergravity increases number and size of cells and enhances lignin deposition in the stem of Arabidopsis thaliana.
We have performed a lab-based hypergravity cultivation experiment using a centrifuge equipped with a lighting system and examined long-term effects of hypergravity on the development of the main axis of the Arabidopsis (Arabidopsis thaliana (L.) Heynh.) primary inflorescence, which comprises the rachis and peduncle, collectively referred to as the main stem for simplicity. Plants grown under 1 × g (gravitational acceleration on Earth) conditions for 20-23 days and having the first visible flower bud were exposed to hypergravity at 8 × g for 10 days. We analyzed the effect of prolonged hypergravity conditions on growth, lignin deposition, and tissue anatomy of the main stem. As a result, the length of the main stem decreased and cross-sectional area, dry mass per unit length, cell number, and lignin content of the main stem significantly increased under hypergravity. Lignin content in the rosette leaves also increased when they were exposed to hypergravity during their development. Except for interfascicular fibers, cross-sectional areas of the tissues composing the internode significantly increased under hypergravity in most types of the tissues in the basal part than the apical part of the main stem, indicating that the effect of hypergravity is more pronounced in the basal part than the apical part. The number of cells in the fascicular cambium and xylem significantly increased under hypergravity both in the apical and basal internodes of the main stem, indicating a possibility that hypergravity stimulates procambium activity to produce xylem element more than phloem element. The main stem was suggested to be strengthened through changes in its morphological characteristics as well as lignin deposition under prolonged hypergravity conditions.
期刊介绍:
The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology.
The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.