{"title":"对评估基于细胞外囊泡疗法的安全性和有效性的临床试验进行系统回顾和荟萃分析。","authors":"Mats Van Delen, Judith Derdelinckx, Kristien Wouters, Inge Nelissen, Nathalie Cools","doi":"10.1002/jev2.12458","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, it has become clear that extracellular vesicles (EVs) are not a cellular waste disposal vesicle but are an essential part of an intercellular communication system. Besides the use of EVs in biomarker studies and diagnostics, the potential of EV-therapeutics has been seen by many. They provide unique properties for disease therapy, including strong immune-modulatory actions, the possibility of engineering, low immunogenicity, and the capability of crossing biological barriers. Proof-of-concept of EV-therapeutics for various pathologies has been achieved in preclinical studies. However, clinical trials with EVs have only been emerging slowly. Here, we aim to provide a comprehensive overview of the current state-of-the-art concerning clinical studies using EVs in human therapy. By approaching the current knowledge in a systematic manner, we were able to include 21 reports for meta-analysis of safety and evaluation of efficacy outcomes. Overall, we have shown that EV-based therapy is safe with a low incidence of serious adverse events (SAE; 0.7% (95%-CI: 0.1–5.2%), and adverse events (AE; 4.4% (95%-CI: 0.7–22.2%). Subgroup analysis showed no significant difference in SAE when comparing autologous versus allogeneic administration, as well as engineered versus non-engineered EV products. A significantly higher number of AE was seen in autologous versus allogeneic administration. However, the clinical relevance remains questionable. Evaluation of the clinical outcomes of immunostimulatory, immunosuppressive or regenerative EV-therapies indicated improvement in the majority of treated patients. Despite these promising results, data need to be approached with caution due to a high heterogeneity in the EVs manufacturing methods, study design, and reporting of (S)AE. Overall, we conclude that EV-based therapy is safe and presents a promising opportunity in therapy. More efforts are needed in the standardization and harmonization of reporting of EV isolation and characterization data as well as in the reporting of (S)AE to allow inter-study comparison.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 7","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220457/pdf/","citationCount":"0","resultStr":"{\"title\":\"A systematic review and meta-analysis of clinical trials assessing safety and efficacy of human extracellular vesicle-based therapy\",\"authors\":\"Mats Van Delen, Judith Derdelinckx, Kristien Wouters, Inge Nelissen, Nathalie Cools\",\"doi\":\"10.1002/jev2.12458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nowadays, it has become clear that extracellular vesicles (EVs) are not a cellular waste disposal vesicle but are an essential part of an intercellular communication system. Besides the use of EVs in biomarker studies and diagnostics, the potential of EV-therapeutics has been seen by many. They provide unique properties for disease therapy, including strong immune-modulatory actions, the possibility of engineering, low immunogenicity, and the capability of crossing biological barriers. Proof-of-concept of EV-therapeutics for various pathologies has been achieved in preclinical studies. However, clinical trials with EVs have only been emerging slowly. Here, we aim to provide a comprehensive overview of the current state-of-the-art concerning clinical studies using EVs in human therapy. By approaching the current knowledge in a systematic manner, we were able to include 21 reports for meta-analysis of safety and evaluation of efficacy outcomes. Overall, we have shown that EV-based therapy is safe with a low incidence of serious adverse events (SAE; 0.7% (95%-CI: 0.1–5.2%), and adverse events (AE; 4.4% (95%-CI: 0.7–22.2%). Subgroup analysis showed no significant difference in SAE when comparing autologous versus allogeneic administration, as well as engineered versus non-engineered EV products. A significantly higher number of AE was seen in autologous versus allogeneic administration. However, the clinical relevance remains questionable. Evaluation of the clinical outcomes of immunostimulatory, immunosuppressive or regenerative EV-therapies indicated improvement in the majority of treated patients. Despite these promising results, data need to be approached with caution due to a high heterogeneity in the EVs manufacturing methods, study design, and reporting of (S)AE. Overall, we conclude that EV-based therapy is safe and presents a promising opportunity in therapy. More efforts are needed in the standardization and harmonization of reporting of EV isolation and characterization data as well as in the reporting of (S)AE to allow inter-study comparison.</p>\",\"PeriodicalId\":15811,\"journal\":{\"name\":\"Journal of Extracellular Vesicles\",\"volume\":\"13 7\",\"pages\":\"\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220457/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Extracellular Vesicles\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jev2.12458\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.12458","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
如今,人们已经清楚地认识到,细胞外囊泡(EVs)并非细胞废物处理囊泡,而是细胞间通信系统的重要组成部分。除了在生物标志物研究和诊断中使用 EVs 外,许多人还看到了 EV 治疗的潜力。它们具有独特的疾病治疗特性,包括强大的免疫调节作用、工程设计的可能性、低免疫原性以及穿越生物屏障的能力。临床前研究已经证明了 EV 治疗各种病症的概念。然而,使用 EVs 进行的临床试验进展缓慢。在此,我们旨在全面概述目前利用 EVs 进行人体治疗的临床研究的最新进展。通过系统地了解现有知识,我们纳入了 21 份报告,对安全性和疗效结果进行了荟萃分析。总体而言,我们发现基于 EV 的治疗是安全的,严重不良事件(SAE;0.7%(95%-CI:0.1-5.2%))和不良事件(AE;4.4%(95%-CI:0.7-22.2%))发生率较低。亚组分析显示,比较自体与异体给药,以及工程与非工程EV产品,SAE无明显差异。自体给药与异体给药相比,AE明显较多。然而,其临床意义仍值得怀疑。对免疫刺激、免疫抑制或再生性 EV 疗法临床效果的评估表明,大多数接受治疗的患者病情都有所改善。尽管这些结果令人鼓舞,但由于 EVs 制造方法、研究设计和(S)AE 报告的高度异质性,需要谨慎对待这些数据。总之,我们得出结论:基于 EV 的疗法是安全的,并为治疗带来了希望。在 EV 分离和表征数据报告以及(S)AE 报告的标准化和统一化方面还需做出更多努力,以便进行研究间比较。
A systematic review and meta-analysis of clinical trials assessing safety and efficacy of human extracellular vesicle-based therapy
Nowadays, it has become clear that extracellular vesicles (EVs) are not a cellular waste disposal vesicle but are an essential part of an intercellular communication system. Besides the use of EVs in biomarker studies and diagnostics, the potential of EV-therapeutics has been seen by many. They provide unique properties for disease therapy, including strong immune-modulatory actions, the possibility of engineering, low immunogenicity, and the capability of crossing biological barriers. Proof-of-concept of EV-therapeutics for various pathologies has been achieved in preclinical studies. However, clinical trials with EVs have only been emerging slowly. Here, we aim to provide a comprehensive overview of the current state-of-the-art concerning clinical studies using EVs in human therapy. By approaching the current knowledge in a systematic manner, we were able to include 21 reports for meta-analysis of safety and evaluation of efficacy outcomes. Overall, we have shown that EV-based therapy is safe with a low incidence of serious adverse events (SAE; 0.7% (95%-CI: 0.1–5.2%), and adverse events (AE; 4.4% (95%-CI: 0.7–22.2%). Subgroup analysis showed no significant difference in SAE when comparing autologous versus allogeneic administration, as well as engineered versus non-engineered EV products. A significantly higher number of AE was seen in autologous versus allogeneic administration. However, the clinical relevance remains questionable. Evaluation of the clinical outcomes of immunostimulatory, immunosuppressive or regenerative EV-therapies indicated improvement in the majority of treated patients. Despite these promising results, data need to be approached with caution due to a high heterogeneity in the EVs manufacturing methods, study design, and reporting of (S)AE. Overall, we conclude that EV-based therapy is safe and presents a promising opportunity in therapy. More efforts are needed in the standardization and harmonization of reporting of EV isolation and characterization data as well as in the reporting of (S)AE to allow inter-study comparison.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.