家蚕体内 UDP-糖基转移酶 UGT33D1 的特征。

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Feifei Zhu, Jinying Han, Jingdie Hong, Fuchuan Cai, Qi Tang, Qian Yu, Shangshang Ma, Xiaoyong Liu, Shuhao Huo, Keping Chen
{"title":"家蚕体内 UDP-糖基转移酶 UGT33D1 的特征。","authors":"Feifei Zhu,&nbsp;Jinying Han,&nbsp;Jingdie Hong,&nbsp;Fuchuan Cai,&nbsp;Qi Tang,&nbsp;Qian Yu,&nbsp;Shangshang Ma,&nbsp;Xiaoyong Liu,&nbsp;Shuhao Huo,&nbsp;Keping Chen","doi":"10.1111/imb.12935","DOIUrl":null,"url":null,"abstract":"<p>Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are important metabolizing enzymes functioning by adding a sugar moiety to a small lipophilic substrate molecule and play critical roles in drug/toxin metabolism for all realms of life. In this study, the silkworm <i>Bombyx mori</i> UGT33D1 gene was characterized in detail. UGT33D1 was found localized in the endoplasmic reticulum (ER) compartment just like other animal UGTs and was mainly expressed in the silkworm midgut. We first reported that UGT33D1 was important to BmNPV infection, as silencing UGT33D1 inhibited the BmNPV infection in silkworm BmN cells, while overexpressing the gene promoted viral infection. The molecular pathways regulated by UGT33D1 were analysed via transcriptome sequencing upon UGT33D1 knockdown, highlighting the important role of the gene in maintaining a balanced oxidoreductive state of the organism. In addition, proteins that physically interact with UGT33D1 were identified through immunoprecipitation and mass spectrometry analysis, which includes tubulin, elongation factor, certain ribosomal proteins, histone proteins and zinc finger proteins that had been previously reported for human UGT-interacting proteins. This study provided preliminary but important functional information on UGT33D1 and is hoped to trigger deeper investigations into silkworm UGTs and their functional mechanisms.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the UDP-glycosyltransferase UGT33D1 in silkworm Bombyx mori\",\"authors\":\"Feifei Zhu,&nbsp;Jinying Han,&nbsp;Jingdie Hong,&nbsp;Fuchuan Cai,&nbsp;Qi Tang,&nbsp;Qian Yu,&nbsp;Shangshang Ma,&nbsp;Xiaoyong Liu,&nbsp;Shuhao Huo,&nbsp;Keping Chen\",\"doi\":\"10.1111/imb.12935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are important metabolizing enzymes functioning by adding a sugar moiety to a small lipophilic substrate molecule and play critical roles in drug/toxin metabolism for all realms of life. In this study, the silkworm <i>Bombyx mori</i> UGT33D1 gene was characterized in detail. UGT33D1 was found localized in the endoplasmic reticulum (ER) compartment just like other animal UGTs and was mainly expressed in the silkworm midgut. We first reported that UGT33D1 was important to BmNPV infection, as silencing UGT33D1 inhibited the BmNPV infection in silkworm BmN cells, while overexpressing the gene promoted viral infection. The molecular pathways regulated by UGT33D1 were analysed via transcriptome sequencing upon UGT33D1 knockdown, highlighting the important role of the gene in maintaining a balanced oxidoreductive state of the organism. In addition, proteins that physically interact with UGT33D1 were identified through immunoprecipitation and mass spectrometry analysis, which includes tubulin, elongation factor, certain ribosomal proteins, histone proteins and zinc finger proteins that had been previously reported for human UGT-interacting proteins. This study provided preliminary but important functional information on UGT33D1 and is hoped to trigger deeper investigations into silkworm UGTs and their functional mechanisms.</p>\",\"PeriodicalId\":13526,\"journal\":{\"name\":\"Insect Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/imb.12935\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imb.12935","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

二磷酸尿苷(UDP)-糖基转移酶(UGTs)是一种重要的代谢酶,其功能是在亲脂性小底物分子上添加糖基,在所有生命领域的药物/毒素代谢中发挥着关键作用。本研究对家蚕 UGT33D1 基因进行了详细鉴定。与其他动物 UGTs 一样,UGT33D1 也定位于内质网(ER)区,并且主要在家蚕中肠表达。我们首次报道了 UGT33D1 对 BmNPV 感染的重要作用,因为沉默 UGT33D1 可抑制家蚕 BmN 细胞的 BmNPV 感染,而过表达该基因则可促进病毒感染。在敲除 UGT33D1 后,通过转录组测序分析了受 UGT33D1 调控的分子通路,突出了该基因在维持生物体氧化还原平衡状态中的重要作用。此外,还通过免疫沉淀和质谱分析确定了与 UGT33D1 有物理相互作用的蛋白质,其中包括管蛋白、伸长因子、某些核糖体蛋白、组蛋白和锌指蛋白,这些蛋白以前曾报道过与人类 UGT 有相互作用的蛋白质。这项研究为 UGT33D1 提供了初步但重要的功能信息,希望能引发对家蚕 UGT 及其功能机制的更深入研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterization of the UDP-glycosyltransferase UGT33D1 in silkworm Bombyx mori

Characterization of the UDP-glycosyltransferase UGT33D1 in silkworm Bombyx mori

Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are important metabolizing enzymes functioning by adding a sugar moiety to a small lipophilic substrate molecule and play critical roles in drug/toxin metabolism for all realms of life. In this study, the silkworm Bombyx mori UGT33D1 gene was characterized in detail. UGT33D1 was found localized in the endoplasmic reticulum (ER) compartment just like other animal UGTs and was mainly expressed in the silkworm midgut. We first reported that UGT33D1 was important to BmNPV infection, as silencing UGT33D1 inhibited the BmNPV infection in silkworm BmN cells, while overexpressing the gene promoted viral infection. The molecular pathways regulated by UGT33D1 were analysed via transcriptome sequencing upon UGT33D1 knockdown, highlighting the important role of the gene in maintaining a balanced oxidoreductive state of the organism. In addition, proteins that physically interact with UGT33D1 were identified through immunoprecipitation and mass spectrometry analysis, which includes tubulin, elongation factor, certain ribosomal proteins, histone proteins and zinc finger proteins that had been previously reported for human UGT-interacting proteins. This study provided preliminary but important functional information on UGT33D1 and is hoped to trigger deeper investigations into silkworm UGTs and their functional mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信