Niveditha Pattathil, Tin-Suet Joan Lee, Ryan S Huang, Eleanor R Lena, Tina Felfeli
{"title":"在眼科电子病历分析中使用人工智能的研究遵守 CONSORT-AI 指南中人工智能特定项目的情况:系统性综述。","authors":"Niveditha Pattathil, Tin-Suet Joan Lee, Ryan S Huang, Eleanor R Lena, Tina Felfeli","doi":"10.1007/s00417-024-06553-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In the context of ophthalmologic practice, there has been a rapid increase in the amount of data collected using electronic health records (EHR). Artificial intelligence (AI) offers a promising means of centralizing data collection and analysis, but to date, most AI algorithms have only been applied to analyzing image data in ophthalmologic practice. In this review we aimed to characterize the use of AI in the analysis of EHR, and to critically appraise the adherence of each included study to the CONSORT-AI reporting guideline.</p><p><strong>Methods: </strong>A comprehensive search of three relevant databases (MEDLINE, EMBASE, and Cochrane Library) from January 2010 to February 2023 was conducted. The included studies were evaluated for reporting quality based on the AI-specific items from the CONSORT-AI reporting guideline.</p><p><strong>Results: </strong>Of the 4,968 articles identified by our search, 89 studies met all inclusion criteria and were included in this review. Most of the studies utilized AI for ocular disease prediction (n = 41, 46.1%), and diabetic retinopathy was the most studied ocular pathology (n = 19, 21.3%). The overall mean CONSORT-AI score across the 14 measured items was 12.1 (range 8-14, median 12). Categories with the lowest adherence rates were: describing handling of poor quality data (48.3%), specifying participant inclusion and exclusion criteria (56.2%), and detailing access to the AI intervention or its code, including any restrictions (62.9%).</p><p><strong>Conclusions: </strong>In conclusion, we have identified that AI is prominently being used for disease prediction in ophthalmology clinics, however these algorithms are limited by their lack of generalizability and cross-center reproducibility. A standardized framework for AI reporting should be developed, to improve AI applications in the management of ocular disease and ophthalmology decision making.</p>","PeriodicalId":12795,"journal":{"name":"Graefe’s Archive for Clinical and Experimental Ophthalmology","volume":" ","pages":"3741-3748"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adherence of studies involving artificial intelligence in the analysis of ophthalmology electronic medical records to AI-specific items from the CONSORT-AI guideline: a systematic review.\",\"authors\":\"Niveditha Pattathil, Tin-Suet Joan Lee, Ryan S Huang, Eleanor R Lena, Tina Felfeli\",\"doi\":\"10.1007/s00417-024-06553-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>In the context of ophthalmologic practice, there has been a rapid increase in the amount of data collected using electronic health records (EHR). Artificial intelligence (AI) offers a promising means of centralizing data collection and analysis, but to date, most AI algorithms have only been applied to analyzing image data in ophthalmologic practice. In this review we aimed to characterize the use of AI in the analysis of EHR, and to critically appraise the adherence of each included study to the CONSORT-AI reporting guideline.</p><p><strong>Methods: </strong>A comprehensive search of three relevant databases (MEDLINE, EMBASE, and Cochrane Library) from January 2010 to February 2023 was conducted. The included studies were evaluated for reporting quality based on the AI-specific items from the CONSORT-AI reporting guideline.</p><p><strong>Results: </strong>Of the 4,968 articles identified by our search, 89 studies met all inclusion criteria and were included in this review. Most of the studies utilized AI for ocular disease prediction (n = 41, 46.1%), and diabetic retinopathy was the most studied ocular pathology (n = 19, 21.3%). The overall mean CONSORT-AI score across the 14 measured items was 12.1 (range 8-14, median 12). Categories with the lowest adherence rates were: describing handling of poor quality data (48.3%), specifying participant inclusion and exclusion criteria (56.2%), and detailing access to the AI intervention or its code, including any restrictions (62.9%).</p><p><strong>Conclusions: </strong>In conclusion, we have identified that AI is prominently being used for disease prediction in ophthalmology clinics, however these algorithms are limited by their lack of generalizability and cross-center reproducibility. A standardized framework for AI reporting should be developed, to improve AI applications in the management of ocular disease and ophthalmology decision making.</p>\",\"PeriodicalId\":12795,\"journal\":{\"name\":\"Graefe’s Archive for Clinical and Experimental Ophthalmology\",\"volume\":\" \",\"pages\":\"3741-3748\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graefe’s Archive for Clinical and Experimental Ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00417-024-06553-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graefe’s Archive for Clinical and Experimental Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00417-024-06553-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Adherence of studies involving artificial intelligence in the analysis of ophthalmology electronic medical records to AI-specific items from the CONSORT-AI guideline: a systematic review.
Purpose: In the context of ophthalmologic practice, there has been a rapid increase in the amount of data collected using electronic health records (EHR). Artificial intelligence (AI) offers a promising means of centralizing data collection and analysis, but to date, most AI algorithms have only been applied to analyzing image data in ophthalmologic practice. In this review we aimed to characterize the use of AI in the analysis of EHR, and to critically appraise the adherence of each included study to the CONSORT-AI reporting guideline.
Methods: A comprehensive search of three relevant databases (MEDLINE, EMBASE, and Cochrane Library) from January 2010 to February 2023 was conducted. The included studies were evaluated for reporting quality based on the AI-specific items from the CONSORT-AI reporting guideline.
Results: Of the 4,968 articles identified by our search, 89 studies met all inclusion criteria and were included in this review. Most of the studies utilized AI for ocular disease prediction (n = 41, 46.1%), and diabetic retinopathy was the most studied ocular pathology (n = 19, 21.3%). The overall mean CONSORT-AI score across the 14 measured items was 12.1 (range 8-14, median 12). Categories with the lowest adherence rates were: describing handling of poor quality data (48.3%), specifying participant inclusion and exclusion criteria (56.2%), and detailing access to the AI intervention or its code, including any restrictions (62.9%).
Conclusions: In conclusion, we have identified that AI is prominently being used for disease prediction in ophthalmology clinics, however these algorithms are limited by their lack of generalizability and cross-center reproducibility. A standardized framework for AI reporting should be developed, to improve AI applications in the management of ocular disease and ophthalmology decision making.
期刊介绍:
Graefe''s Archive for Clinical and Experimental Ophthalmology is a distinguished international journal that presents original clinical reports and clini-cally relevant experimental studies. Founded in 1854 by Albrecht von Graefe to serve as a source of useful clinical information and a stimulus for discussion, the journal has published articles by leading ophthalmologists and vision research scientists for more than a century. With peer review by an international Editorial Board and prompt English-language publication, Graefe''s Archive provides rapid dissemination of clinical and clinically related experimental information.