{"title":"根据植物生长数据计算 beta-Euler 形状指数的编程工具箱。","authors":"Jerzy Kosek, Mariusz Pietruszka","doi":"10.4149/gpb_2024016","DOIUrl":null,"url":null,"abstract":"<p><p>Since the acid growth theory was introduced in plant physiology and mainframe computers became more widely available in the mid-20th century, there has been a growing need to accurately predict plant cell morphological parameters during growth. This article presents a computer program that uses an original numerical method to solve a highly nonlinear growth equation. The program is written in Python, a popular open-source scientific software environment called CoCalc or SAGE. This program can be used to determine the growth of an individual plant cell or multicellular organ, such as a coleoptile or hypocotyl segment, at the non-meristemic limit. This standalone program is designed to be user-friendly and accessible to all readers, without barriers. With only a few key parameters, including pH and temperature, this program provides a practical set of tools for comparing growth-related experimental data across various areas of plant biology. Additionally, it could be useful in predicting plant growth during assisted migration, particularly in the face of climate change.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A programming toolbox for calculating beta-Euler shape exponents from plant growth data.\",\"authors\":\"Jerzy Kosek, Mariusz Pietruszka\",\"doi\":\"10.4149/gpb_2024016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since the acid growth theory was introduced in plant physiology and mainframe computers became more widely available in the mid-20th century, there has been a growing need to accurately predict plant cell morphological parameters during growth. This article presents a computer program that uses an original numerical method to solve a highly nonlinear growth equation. The program is written in Python, a popular open-source scientific software environment called CoCalc or SAGE. This program can be used to determine the growth of an individual plant cell or multicellular organ, such as a coleoptile or hypocotyl segment, at the non-meristemic limit. This standalone program is designed to be user-friendly and accessible to all readers, without barriers. With only a few key parameters, including pH and temperature, this program provides a practical set of tools for comparing growth-related experimental data across various areas of plant biology. Additionally, it could be useful in predicting plant growth during assisted migration, particularly in the face of climate change.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4149/gpb_2024016\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4149/gpb_2024016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A programming toolbox for calculating beta-Euler shape exponents from plant growth data.
Since the acid growth theory was introduced in plant physiology and mainframe computers became more widely available in the mid-20th century, there has been a growing need to accurately predict plant cell morphological parameters during growth. This article presents a computer program that uses an original numerical method to solve a highly nonlinear growth equation. The program is written in Python, a popular open-source scientific software environment called CoCalc or SAGE. This program can be used to determine the growth of an individual plant cell or multicellular organ, such as a coleoptile or hypocotyl segment, at the non-meristemic limit. This standalone program is designed to be user-friendly and accessible to all readers, without barriers. With only a few key parameters, including pH and temperature, this program provides a practical set of tools for comparing growth-related experimental data across various areas of plant biology. Additionally, it could be useful in predicting plant growth during assisted migration, particularly in the face of climate change.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.