Nicholas Cox, Joseph Murray, Joseph Hart, Brandon Redding
{"title":"基于光纤分布式反馈的下一代光子水库计算机。","authors":"Nicholas Cox, Joseph Murray, Joseph Hart, Brandon Redding","doi":"10.1063/5.0212158","DOIUrl":null,"url":null,"abstract":"<p><p>Reservoir computing (RC) is a machine learning paradigm that excels at dynamical systems analysis. Photonic RCs, which perform implicit computation through optical interactions, have attracted increasing attention due to their potential for low latency predictions. However, most existing photonic RCs rely on a nonlinear physical cavity to implement system memory, limiting control over the memory structure and requiring long warm-up times to eliminate transients. In this work, we resolve these issues by demonstrating a photonic next-generation reservoir computer (NG-RC) using a fiber optic platform. Our photonic NG-RC eliminates the need for a cavity by generating feature vectors directly from nonlinear combinations of the input data with varying delays. Our approach uses Rayleigh backscattering to produce output feature vectors by an unconventional nonlinearity resulting from coherent, interferometric mixing followed by a quadratic readout. Performing linear optimization on these feature vectors, our photonic NG-RC demonstrates state-of-the-art performance for the observer (cross-prediction) task applied to the Rössler, Lorenz, and Kuramoto-Sivashinsky systems. In contrast to digital NG-RC implementations, we show that it is possible to scale to high-dimensional systems while maintaining low latency and low power consumption.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photonic next-generation reservoir computer based on distributed feedback in optical fiber.\",\"authors\":\"Nicholas Cox, Joseph Murray, Joseph Hart, Brandon Redding\",\"doi\":\"10.1063/5.0212158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reservoir computing (RC) is a machine learning paradigm that excels at dynamical systems analysis. Photonic RCs, which perform implicit computation through optical interactions, have attracted increasing attention due to their potential for low latency predictions. However, most existing photonic RCs rely on a nonlinear physical cavity to implement system memory, limiting control over the memory structure and requiring long warm-up times to eliminate transients. In this work, we resolve these issues by demonstrating a photonic next-generation reservoir computer (NG-RC) using a fiber optic platform. Our photonic NG-RC eliminates the need for a cavity by generating feature vectors directly from nonlinear combinations of the input data with varying delays. Our approach uses Rayleigh backscattering to produce output feature vectors by an unconventional nonlinearity resulting from coherent, interferometric mixing followed by a quadratic readout. Performing linear optimization on these feature vectors, our photonic NG-RC demonstrates state-of-the-art performance for the observer (cross-prediction) task applied to the Rössler, Lorenz, and Kuramoto-Sivashinsky systems. In contrast to digital NG-RC implementations, we show that it is possible to scale to high-dimensional systems while maintaining low latency and low power consumption.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0212158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0212158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Photonic next-generation reservoir computer based on distributed feedback in optical fiber.
Reservoir computing (RC) is a machine learning paradigm that excels at dynamical systems analysis. Photonic RCs, which perform implicit computation through optical interactions, have attracted increasing attention due to their potential for low latency predictions. However, most existing photonic RCs rely on a nonlinear physical cavity to implement system memory, limiting control over the memory structure and requiring long warm-up times to eliminate transients. In this work, we resolve these issues by demonstrating a photonic next-generation reservoir computer (NG-RC) using a fiber optic platform. Our photonic NG-RC eliminates the need for a cavity by generating feature vectors directly from nonlinear combinations of the input data with varying delays. Our approach uses Rayleigh backscattering to produce output feature vectors by an unconventional nonlinearity resulting from coherent, interferometric mixing followed by a quadratic readout. Performing linear optimization on these feature vectors, our photonic NG-RC demonstrates state-of-the-art performance for the observer (cross-prediction) task applied to the Rössler, Lorenz, and Kuramoto-Sivashinsky systems. In contrast to digital NG-RC implementations, we show that it is possible to scale to high-dimensional systems while maintaining low latency and low power consumption.