基于光纤分布式反馈的下一代光子水库计算机。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Nicholas Cox, Joseph Murray, Joseph Hart, Brandon Redding
{"title":"基于光纤分布式反馈的下一代光子水库计算机。","authors":"Nicholas Cox, Joseph Murray, Joseph Hart, Brandon Redding","doi":"10.1063/5.0212158","DOIUrl":null,"url":null,"abstract":"<p><p>Reservoir computing (RC) is a machine learning paradigm that excels at dynamical systems analysis. Photonic RCs, which perform implicit computation through optical interactions, have attracted increasing attention due to their potential for low latency predictions. However, most existing photonic RCs rely on a nonlinear physical cavity to implement system memory, limiting control over the memory structure and requiring long warm-up times to eliminate transients. In this work, we resolve these issues by demonstrating a photonic next-generation reservoir computer (NG-RC) using a fiber optic platform. Our photonic NG-RC eliminates the need for a cavity by generating feature vectors directly from nonlinear combinations of the input data with varying delays. Our approach uses Rayleigh backscattering to produce output feature vectors by an unconventional nonlinearity resulting from coherent, interferometric mixing followed by a quadratic readout. Performing linear optimization on these feature vectors, our photonic NG-RC demonstrates state-of-the-art performance for the observer (cross-prediction) task applied to the Rössler, Lorenz, and Kuramoto-Sivashinsky systems. In contrast to digital NG-RC implementations, we show that it is possible to scale to high-dimensional systems while maintaining low latency and low power consumption.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photonic next-generation reservoir computer based on distributed feedback in optical fiber.\",\"authors\":\"Nicholas Cox, Joseph Murray, Joseph Hart, Brandon Redding\",\"doi\":\"10.1063/5.0212158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reservoir computing (RC) is a machine learning paradigm that excels at dynamical systems analysis. Photonic RCs, which perform implicit computation through optical interactions, have attracted increasing attention due to their potential for low latency predictions. However, most existing photonic RCs rely on a nonlinear physical cavity to implement system memory, limiting control over the memory structure and requiring long warm-up times to eliminate transients. In this work, we resolve these issues by demonstrating a photonic next-generation reservoir computer (NG-RC) using a fiber optic platform. Our photonic NG-RC eliminates the need for a cavity by generating feature vectors directly from nonlinear combinations of the input data with varying delays. Our approach uses Rayleigh backscattering to produce output feature vectors by an unconventional nonlinearity resulting from coherent, interferometric mixing followed by a quadratic readout. Performing linear optimization on these feature vectors, our photonic NG-RC demonstrates state-of-the-art performance for the observer (cross-prediction) task applied to the Rössler, Lorenz, and Kuramoto-Sivashinsky systems. In contrast to digital NG-RC implementations, we show that it is possible to scale to high-dimensional systems while maintaining low latency and low power consumption.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0212158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0212158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

水库计算(RC)是一种机器学习范例,擅长动态系统分析。光子 RC 通过光相互作用执行隐式计算,因其在低延迟预测方面的潜力而受到越来越多的关注。然而,现有的大多数光子 RC 都依赖非线性物理空腔来实现系统内存,从而限制了对内存结构的控制,并且需要较长的预热时间来消除瞬态。在这项工作中,我们利用光纤平台展示了光子下一代存储计算机(NG-RC),从而解决了这些问题。我们的光子 NG-RC 无需空腔,可直接根据输入数据的非线性组合和不同延迟生成特征向量。我们的方法利用瑞利反向散射,通过相干干涉混合产生的非常规非线性产生输出特征向量,然后进行二次读出。在这些特征向量上进行线性优化后,我们的光子 NG-RC 在应用于罗斯勒、洛伦兹和 Kuramoto-Sivashinsky 系统的观测器(交叉预测)任务中表现出了最先进的性能。与数字 NG-RC 实现不同的是,我们展示了在保持低延迟和低功耗的同时扩展到高维系统的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photonic next-generation reservoir computer based on distributed feedback in optical fiber.

Reservoir computing (RC) is a machine learning paradigm that excels at dynamical systems analysis. Photonic RCs, which perform implicit computation through optical interactions, have attracted increasing attention due to their potential for low latency predictions. However, most existing photonic RCs rely on a nonlinear physical cavity to implement system memory, limiting control over the memory structure and requiring long warm-up times to eliminate transients. In this work, we resolve these issues by demonstrating a photonic next-generation reservoir computer (NG-RC) using a fiber optic platform. Our photonic NG-RC eliminates the need for a cavity by generating feature vectors directly from nonlinear combinations of the input data with varying delays. Our approach uses Rayleigh backscattering to produce output feature vectors by an unconventional nonlinearity resulting from coherent, interferometric mixing followed by a quadratic readout. Performing linear optimization on these feature vectors, our photonic NG-RC demonstrates state-of-the-art performance for the observer (cross-prediction) task applied to the Rössler, Lorenz, and Kuramoto-Sivashinsky systems. In contrast to digital NG-RC implementations, we show that it is possible to scale to high-dimensional systems while maintaining low latency and low power consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信