Georgios Aliatimis, Ruriko Yoshida, Burak Boyacı, James A Grant
{"title":"系统发生树空间上的热带逻辑回归模型","authors":"Georgios Aliatimis, Ruriko Yoshida, Burak Boyacı, James A Grant","doi":"10.1007/s11538-024-01327-8","DOIUrl":null,"url":null,"abstract":"<p><p>Classification of gene trees is an important task both in the analysis of multi-locus phylogenetic data, and assessment of the convergence of Markov Chain Monte Carlo (MCMC) analyses used in Bayesian phylogenetic tree reconstruction. The logistic regression model is one of the most popular classification models in statistical learning, thanks to its computational speed and interpretability. However, it is not appropriate to directly apply the standard logistic regression model to a set of phylogenetic trees, as the space of phylogenetic trees is non-Euclidean and thus contradicts the standard assumptions on covariates. It is well-known in tropical geometry and phylogenetics that the space of phylogenetic trees is a tropical linear space in terms of the max-plus algebra. Therefore, in this paper, we propose an analogue approach of the logistic regression model in the setting of tropical geometry. Our proposed method outperforms classical logistic regression in terms of Area under the ROC Curve in numerical examples, including with data generated by the multi-species coalescent model. Theoretical properties such as statistical consistency have been proved and generalization error rates have been derived. Finally, our classification algorithm is proposed as an MCMC convergence criterion for Mr Bayes. Unlike the convergence metric used by Mr Bayes which is only dependent on tree topologies, our method is sensitive to branch lengths and therefore provides a more robust metric for convergence. In a test case, it is illustrated that the tropical logistic regression can differentiate between two independently run MCMC chains, even when the standard metric cannot.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219468/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tropical Logistic Regression Model on Space of Phylogenetic Trees.\",\"authors\":\"Georgios Aliatimis, Ruriko Yoshida, Burak Boyacı, James A Grant\",\"doi\":\"10.1007/s11538-024-01327-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Classification of gene trees is an important task both in the analysis of multi-locus phylogenetic data, and assessment of the convergence of Markov Chain Monte Carlo (MCMC) analyses used in Bayesian phylogenetic tree reconstruction. The logistic regression model is one of the most popular classification models in statistical learning, thanks to its computational speed and interpretability. However, it is not appropriate to directly apply the standard logistic regression model to a set of phylogenetic trees, as the space of phylogenetic trees is non-Euclidean and thus contradicts the standard assumptions on covariates. It is well-known in tropical geometry and phylogenetics that the space of phylogenetic trees is a tropical linear space in terms of the max-plus algebra. Therefore, in this paper, we propose an analogue approach of the logistic regression model in the setting of tropical geometry. Our proposed method outperforms classical logistic regression in terms of Area under the ROC Curve in numerical examples, including with data generated by the multi-species coalescent model. Theoretical properties such as statistical consistency have been proved and generalization error rates have been derived. Finally, our classification algorithm is proposed as an MCMC convergence criterion for Mr Bayes. Unlike the convergence metric used by Mr Bayes which is only dependent on tree topologies, our method is sensitive to branch lengths and therefore provides a more robust metric for convergence. In a test case, it is illustrated that the tropical logistic regression can differentiate between two independently run MCMC chains, even when the standard metric cannot.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219468/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-024-01327-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01327-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Tropical Logistic Regression Model on Space of Phylogenetic Trees.
Classification of gene trees is an important task both in the analysis of multi-locus phylogenetic data, and assessment of the convergence of Markov Chain Monte Carlo (MCMC) analyses used in Bayesian phylogenetic tree reconstruction. The logistic regression model is one of the most popular classification models in statistical learning, thanks to its computational speed and interpretability. However, it is not appropriate to directly apply the standard logistic regression model to a set of phylogenetic trees, as the space of phylogenetic trees is non-Euclidean and thus contradicts the standard assumptions on covariates. It is well-known in tropical geometry and phylogenetics that the space of phylogenetic trees is a tropical linear space in terms of the max-plus algebra. Therefore, in this paper, we propose an analogue approach of the logistic regression model in the setting of tropical geometry. Our proposed method outperforms classical logistic regression in terms of Area under the ROC Curve in numerical examples, including with data generated by the multi-species coalescent model. Theoretical properties such as statistical consistency have been proved and generalization error rates have been derived. Finally, our classification algorithm is proposed as an MCMC convergence criterion for Mr Bayes. Unlike the convergence metric used by Mr Bayes which is only dependent on tree topologies, our method is sensitive to branch lengths and therefore provides a more robust metric for convergence. In a test case, it is illustrated that the tropical logistic regression can differentiate between two independently run MCMC chains, even when the standard metric cannot.