Andrey D. Manakhov, Nelli A. Aarakelyan, Adela V. Lapteacru, Tatiana V. Andreeva, Oleg V. Trapezov, Evgeny I. Rogaev
{"title":"基因组分析将美洲水貂的皇家粉色被毛表型与 HPS3 基因中的 1 型逆转录病毒元件插入联系起来。","authors":"Andrey D. Manakhov, Nelli A. Aarakelyan, Adela V. Lapteacru, Tatiana V. Andreeva, Oleg V. Trapezov, Evgeny I. Rogaev","doi":"10.1111/age.13461","DOIUrl":null,"url":null,"abstract":"<p>To date, only 10 of the more than 30 fur colours that had been observed in American mink (<i>Neogale vison</i>) have been linked to specific genes. The Royal pastel fur colour is part of a large family of brownish colours that are quite similar to one another, making breeding and selecting processes more difficult. Here we carried out whole-genome sequencing of five American minks with Royal pastel (<i>b</i>/<i>b</i>) phenotypes originating from two distinct mink populations. We identified an insertion of endogenous retroviral element type 1 (ERV1) into the first intron of the gene encoding the HPS3 protein, which regulates the trafficking of tyrosinase-containing vesicles to maturing melanosomes. With Cas9-targeted nanopore sequencing, we reconstructed the full-length sequence of the 11.7 Kb ERV1 insertion and observed hypermethylation that spread to the <i>HPS3</i> gene promoter region. These findings highlight the role of HPS3 in the formation of melanosomes and melanin, as well as the genetic process regulating the intensity and spectrum of hair colour. Moreover, in mink breeding projects, these data are also useful for tracking economically important fur qualities.</p>","PeriodicalId":7905,"journal":{"name":"Animal genetics","volume":"55 5","pages":"788-792"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic analysis links the American mink Royal pastel coat phenotype to retroviral element type 1 insertion in the HPS3 gene\",\"authors\":\"Andrey D. Manakhov, Nelli A. Aarakelyan, Adela V. Lapteacru, Tatiana V. Andreeva, Oleg V. Trapezov, Evgeny I. Rogaev\",\"doi\":\"10.1111/age.13461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To date, only 10 of the more than 30 fur colours that had been observed in American mink (<i>Neogale vison</i>) have been linked to specific genes. The Royal pastel fur colour is part of a large family of brownish colours that are quite similar to one another, making breeding and selecting processes more difficult. Here we carried out whole-genome sequencing of five American minks with Royal pastel (<i>b</i>/<i>b</i>) phenotypes originating from two distinct mink populations. We identified an insertion of endogenous retroviral element type 1 (ERV1) into the first intron of the gene encoding the HPS3 protein, which regulates the trafficking of tyrosinase-containing vesicles to maturing melanosomes. With Cas9-targeted nanopore sequencing, we reconstructed the full-length sequence of the 11.7 Kb ERV1 insertion and observed hypermethylation that spread to the <i>HPS3</i> gene promoter region. These findings highlight the role of HPS3 in the formation of melanosomes and melanin, as well as the genetic process regulating the intensity and spectrum of hair colour. Moreover, in mink breeding projects, these data are also useful for tracking economically important fur qualities.</p>\",\"PeriodicalId\":7905,\"journal\":{\"name\":\"Animal genetics\",\"volume\":\"55 5\",\"pages\":\"788-792\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/age.13461\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal genetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/age.13461","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Genomic analysis links the American mink Royal pastel coat phenotype to retroviral element type 1 insertion in the HPS3 gene
To date, only 10 of the more than 30 fur colours that had been observed in American mink (Neogale vison) have been linked to specific genes. The Royal pastel fur colour is part of a large family of brownish colours that are quite similar to one another, making breeding and selecting processes more difficult. Here we carried out whole-genome sequencing of five American minks with Royal pastel (b/b) phenotypes originating from two distinct mink populations. We identified an insertion of endogenous retroviral element type 1 (ERV1) into the first intron of the gene encoding the HPS3 protein, which regulates the trafficking of tyrosinase-containing vesicles to maturing melanosomes. With Cas9-targeted nanopore sequencing, we reconstructed the full-length sequence of the 11.7 Kb ERV1 insertion and observed hypermethylation that spread to the HPS3 gene promoter region. These findings highlight the role of HPS3 in the formation of melanosomes and melanin, as well as the genetic process regulating the intensity and spectrum of hair colour. Moreover, in mink breeding projects, these data are also useful for tracking economically important fur qualities.
期刊介绍:
Animal Genetics reports frontline research on immunogenetics, molecular genetics and functional genomics of economically important and domesticated animals. Publications include the study of variability at gene and protein levels, mapping of genes, traits and QTLs, associations between genes and traits, genetic diversity, and characterization of gene or protein expression and control related to phenotypic or genetic variation.
The journal publishes full-length articles, short communications and brief notes, as well as commissioned and submitted mini-reviews on issues of interest to Animal Genetics readers.