{"title":"根据突变分析蛋白质。","authors":"Jorge A. Vila","doi":"10.1007/s00249-024-01714-y","DOIUrl":null,"url":null,"abstract":"<div><p>Proteins have evolved through mutations—amino acid substitutions—since life appeared on Earth, some 10<sup>9</sup> years ago. The study of these phenomena has been of particular significance because of their impact on protein stability, function, and structure. This study offers a new viewpoint on how the most recent findings in these areas can be used to explore the impact of mutations on protein sequence, stability, and evolvability. Preliminary results indicate that: (1) mutations can be viewed as sensitive probes to identify ‘typos’ in the amino-acid sequence, and also to assess the resistance of naturally occurring proteins to unwanted sequence alterations; (2) the presence of ‘typos’ in the amino acid sequence, rather than being an evolutionary obstacle, could promote faster evolvability and, in turn, increase the likelihood of higher protein stability; (3) the mutation site is far more important than the substituted amino acid in terms of the marginal stability changes of the protein, and (4) the unpredictability of protein evolution at the molecular level—by mutations—exists even in the absence of epistasis effects. Finally, the Darwinian concept of evolution “descent with modification” and experimental evidence endorse one of the results of this study, which suggests that some regions of any protein sequence are susceptible to mutations while others are not. This work contributes to our general understanding of protein responses to mutations and may spur significant progress in our efforts to develop methods to accurately forecast changes in protein stability, their propensity for metamorphism, and their ability to evolve.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 5-6","pages":"255 - 265"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of proteins in the light of mutations\",\"authors\":\"Jorge A. Vila\",\"doi\":\"10.1007/s00249-024-01714-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Proteins have evolved through mutations—amino acid substitutions—since life appeared on Earth, some 10<sup>9</sup> years ago. The study of these phenomena has been of particular significance because of their impact on protein stability, function, and structure. This study offers a new viewpoint on how the most recent findings in these areas can be used to explore the impact of mutations on protein sequence, stability, and evolvability. Preliminary results indicate that: (1) mutations can be viewed as sensitive probes to identify ‘typos’ in the amino-acid sequence, and also to assess the resistance of naturally occurring proteins to unwanted sequence alterations; (2) the presence of ‘typos’ in the amino acid sequence, rather than being an evolutionary obstacle, could promote faster evolvability and, in turn, increase the likelihood of higher protein stability; (3) the mutation site is far more important than the substituted amino acid in terms of the marginal stability changes of the protein, and (4) the unpredictability of protein evolution at the molecular level—by mutations—exists even in the absence of epistasis effects. Finally, the Darwinian concept of evolution “descent with modification” and experimental evidence endorse one of the results of this study, which suggests that some regions of any protein sequence are susceptible to mutations while others are not. This work contributes to our general understanding of protein responses to mutations and may spur significant progress in our efforts to develop methods to accurately forecast changes in protein stability, their propensity for metamorphism, and their ability to evolve.</p></div>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\"53 5-6\",\"pages\":\"255 - 265\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00249-024-01714-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-024-01714-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Proteins have evolved through mutations—amino acid substitutions—since life appeared on Earth, some 109 years ago. The study of these phenomena has been of particular significance because of their impact on protein stability, function, and structure. This study offers a new viewpoint on how the most recent findings in these areas can be used to explore the impact of mutations on protein sequence, stability, and evolvability. Preliminary results indicate that: (1) mutations can be viewed as sensitive probes to identify ‘typos’ in the amino-acid sequence, and also to assess the resistance of naturally occurring proteins to unwanted sequence alterations; (2) the presence of ‘typos’ in the amino acid sequence, rather than being an evolutionary obstacle, could promote faster evolvability and, in turn, increase the likelihood of higher protein stability; (3) the mutation site is far more important than the substituted amino acid in terms of the marginal stability changes of the protein, and (4) the unpredictability of protein evolution at the molecular level—by mutations—exists even in the absence of epistasis effects. Finally, the Darwinian concept of evolution “descent with modification” and experimental evidence endorse one of the results of this study, which suggests that some regions of any protein sequence are susceptible to mutations while others are not. This work contributes to our general understanding of protein responses to mutations and may spur significant progress in our efforts to develop methods to accurately forecast changes in protein stability, their propensity for metamorphism, and their ability to evolve.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.