{"title":"线粒体靶向环金属化 Ir(III)-5,7- 二溴/二氯-2-甲基-8-羟基喹啉配合物及其在 Hep-G2 细胞中的抗癌效果评估。","authors":"Ting Meng, Xiongzhi Shi, Hongfen Chen, Zhong Xu, Weirong Qin, Kehua Wei, Xin Yang, Jin Huang, Chuanan Liao","doi":"10.1093/mtomcs/mfae032","DOIUrl":null,"url":null,"abstract":"<p><p>Both 8-hydroxyquinoline compounds and iridium (Ir) complexes have emerged as potential novel agents for tumor therapy. In this study, we synthesized and characterized two new Ir(III) complexes, [Ir(L1)(bppy)2] (Br-Ir) and [Ir(L2)(bppy)2] (Cl-Ir), with 5,7-dibromo-2-methyl-8-hydroxyquinoline (HL-1) or 5,7-dichloro-2-methyl-8-hydroxyquinoline as the primary ligand. Complexes Br-Ir and Cl-Ir successfully inhibited antitumor activity in Hep-G2 cells. In addition, complexes Br-Ir and Cl-Ir were localized in the mitochondrial membrane and caused mitochondrial damage, autophagy, and cellular immunity in Hep-G2 cells. We tested the proteins related to mitochondrial and mitophagy by western blot analysis, which showed that they triggered mitophagy-mediated apoptotic cell death. Remarkably, complex Br-Ir showed high in vivo antitumor activity, and the tumor growth inhibition rate was 63.0% (P < 0.05). In summary, our study on complex Br-Ir revealed promising results in in vitro and in vivo antitumor activity assays.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial-targeted cyclometalated Ir(III)-5,7-dibromo/dichloro-2-methyl-8-hydroxyquinoline complexes and their anticancer efficacy evaluation in Hep-G2 cells.\",\"authors\":\"Ting Meng, Xiongzhi Shi, Hongfen Chen, Zhong Xu, Weirong Qin, Kehua Wei, Xin Yang, Jin Huang, Chuanan Liao\",\"doi\":\"10.1093/mtomcs/mfae032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Both 8-hydroxyquinoline compounds and iridium (Ir) complexes have emerged as potential novel agents for tumor therapy. In this study, we synthesized and characterized two new Ir(III) complexes, [Ir(L1)(bppy)2] (Br-Ir) and [Ir(L2)(bppy)2] (Cl-Ir), with 5,7-dibromo-2-methyl-8-hydroxyquinoline (HL-1) or 5,7-dichloro-2-methyl-8-hydroxyquinoline as the primary ligand. Complexes Br-Ir and Cl-Ir successfully inhibited antitumor activity in Hep-G2 cells. In addition, complexes Br-Ir and Cl-Ir were localized in the mitochondrial membrane and caused mitochondrial damage, autophagy, and cellular immunity in Hep-G2 cells. We tested the proteins related to mitochondrial and mitophagy by western blot analysis, which showed that they triggered mitophagy-mediated apoptotic cell death. Remarkably, complex Br-Ir showed high in vivo antitumor activity, and the tumor growth inhibition rate was 63.0% (P < 0.05). In summary, our study on complex Br-Ir revealed promising results in in vitro and in vivo antitumor activity assays.</p>\",\"PeriodicalId\":89,\"journal\":{\"name\":\"Metallomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/mtomcs/mfae032\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfae032","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mitochondrial-targeted cyclometalated Ir(III)-5,7-dibromo/dichloro-2-methyl-8-hydroxyquinoline complexes and their anticancer efficacy evaluation in Hep-G2 cells.
Both 8-hydroxyquinoline compounds and iridium (Ir) complexes have emerged as potential novel agents for tumor therapy. In this study, we synthesized and characterized two new Ir(III) complexes, [Ir(L1)(bppy)2] (Br-Ir) and [Ir(L2)(bppy)2] (Cl-Ir), with 5,7-dibromo-2-methyl-8-hydroxyquinoline (HL-1) or 5,7-dichloro-2-methyl-8-hydroxyquinoline as the primary ligand. Complexes Br-Ir and Cl-Ir successfully inhibited antitumor activity in Hep-G2 cells. In addition, complexes Br-Ir and Cl-Ir were localized in the mitochondrial membrane and caused mitochondrial damage, autophagy, and cellular immunity in Hep-G2 cells. We tested the proteins related to mitochondrial and mitophagy by western blot analysis, which showed that they triggered mitophagy-mediated apoptotic cell death. Remarkably, complex Br-Ir showed high in vivo antitumor activity, and the tumor growth inhibition rate was 63.0% (P < 0.05). In summary, our study on complex Br-Ir revealed promising results in in vitro and in vivo antitumor activity assays.