Kongyu Ge, Yifan Gao, Hongyu Yi, Zhan Li, Shaowei Hu, Hongjun Ji, Mingyu Li and Huanhuan Feng*,
{"title":"通过使自然对流和马兰戈尼流在垂滴中同步,增强结构色彩。","authors":"Kongyu Ge, Yifan Gao, Hongyu Yi, Zhan Li, Shaowei Hu, Hongjun Ji, Mingyu Li and Huanhuan Feng*, ","doi":"10.1021/acsami.4c07513","DOIUrl":null,"url":null,"abstract":"<p >Structural color, renowned for its enduring vibrancy, has been extensively developed and applied in the fields of display and anticounterfeiting. However, its limitations in brightness and saturation hinder further application in these areas. Herein, we propose a pendant evaporation self-assembly method to address these challenges simultaneously. By leveraging natural convection and Marangoni flow synchronization, the self-assembly process enhances the dynamics and duration of colloidal nanoparticles, thereby enhancing the orderliness of colloidal photonic crystals. On average, this technique boosts the brightness of structural color by 20% and its saturation by 35%. Moreover, pendant evaporation self-assembly is simple and convenient to operate, making it suitable for industrial production. We anticipate that its adoption will remarkably advance the industrialization of structural color, facilitating its engineering applications across various fields, such as display technology and anticounterfeiting identification.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"16 28","pages":"37318–37327"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Color Enhancement through Synchronizing Natural Convection and Marangoni Flow in Pendant Drops\",\"authors\":\"Kongyu Ge, Yifan Gao, Hongyu Yi, Zhan Li, Shaowei Hu, Hongjun Ji, Mingyu Li and Huanhuan Feng*, \",\"doi\":\"10.1021/acsami.4c07513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Structural color, renowned for its enduring vibrancy, has been extensively developed and applied in the fields of display and anticounterfeiting. However, its limitations in brightness and saturation hinder further application in these areas. Herein, we propose a pendant evaporation self-assembly method to address these challenges simultaneously. By leveraging natural convection and Marangoni flow synchronization, the self-assembly process enhances the dynamics and duration of colloidal nanoparticles, thereby enhancing the orderliness of colloidal photonic crystals. On average, this technique boosts the brightness of structural color by 20% and its saturation by 35%. Moreover, pendant evaporation self-assembly is simple and convenient to operate, making it suitable for industrial production. We anticipate that its adoption will remarkably advance the industrialization of structural color, facilitating its engineering applications across various fields, such as display technology and anticounterfeiting identification.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"16 28\",\"pages\":\"37318–37327\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c07513\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c07513","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Structural Color Enhancement through Synchronizing Natural Convection and Marangoni Flow in Pendant Drops
Structural color, renowned for its enduring vibrancy, has been extensively developed and applied in the fields of display and anticounterfeiting. However, its limitations in brightness and saturation hinder further application in these areas. Herein, we propose a pendant evaporation self-assembly method to address these challenges simultaneously. By leveraging natural convection and Marangoni flow synchronization, the self-assembly process enhances the dynamics and duration of colloidal nanoparticles, thereby enhancing the orderliness of colloidal photonic crystals. On average, this technique boosts the brightness of structural color by 20% and its saturation by 35%. Moreover, pendant evaporation self-assembly is simple and convenient to operate, making it suitable for industrial production. We anticipate that its adoption will remarkably advance the industrialization of structural color, facilitating its engineering applications across various fields, such as display technology and anticounterfeiting identification.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.