利用浅层电路对量子态进行近似编码

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Matan Ben-Dov, David Shnaiderov, Adi Makmal, Emanuele G. Dalla Torre
{"title":"利用浅层电路对量子态进行近似编码","authors":"Matan Ben-Dov, David Shnaiderov, Adi Makmal, Emanuele G. Dalla Torre","doi":"10.1038/s41534-024-00858-1","DOIUrl":null,"url":null,"abstract":"<p>Quantum algorithms and simulations often require the preparation of complex states through sequences of 2-qubit gates. For a generic quantum state, the number of required gates grows exponentially with the number of qubits, becoming unfeasible on near-term quantum devices. Here, we aim at creating an approximate encoding of the target state using a limited number of gates. As a first step, we consider a quantum state that is efficiently represented classically, such as a one-dimensional matrix product state. Using tensor network techniques, we develop and implement an efficient optimization algorithm that approaches the optimal implementation, requiring a polynomial number of iterations. We, next, consider the implementation of the proposed optimization algorithm directly on a quantum computer and overcome inherent barren plateaus by employing a local cost function. Our work offers a universal method to prepare target states using local gates and represents a significant improvement over known strategies.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"62 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate encoding of quantum states using shallow circuits\",\"authors\":\"Matan Ben-Dov, David Shnaiderov, Adi Makmal, Emanuele G. Dalla Torre\",\"doi\":\"10.1038/s41534-024-00858-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum algorithms and simulations often require the preparation of complex states through sequences of 2-qubit gates. For a generic quantum state, the number of required gates grows exponentially with the number of qubits, becoming unfeasible on near-term quantum devices. Here, we aim at creating an approximate encoding of the target state using a limited number of gates. As a first step, we consider a quantum state that is efficiently represented classically, such as a one-dimensional matrix product state. Using tensor network techniques, we develop and implement an efficient optimization algorithm that approaches the optimal implementation, requiring a polynomial number of iterations. We, next, consider the implementation of the proposed optimization algorithm directly on a quantum computer and overcome inherent barren plateaus by employing a local cost function. Our work offers a universal method to prepare target states using local gates and represents a significant improvement over known strategies.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00858-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00858-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

量子算法和模拟通常需要通过 2 量子位门序列来制备复杂状态。对于一般量子态来说,所需门的数量会随着量子比特数量的增加而呈指数增长,这在近期量子设备上是不可行的。在这里,我们的目标是使用有限数量的门来创建目标状态的近似编码。第一步,我们考虑一种经典有效表示的量子态,如一维矩阵乘积态。利用张量网络技术,我们开发并实现了一种高效的优化算法,该算法接近最优实现,只需要多项式数量的迭代。接下来,我们考虑直接在量子计算机上实现所提出的优化算法,并通过采用局部成本函数克服固有的贫瘠高原。我们的工作提供了一种利用局部门准备目标状态的通用方法,与已知策略相比有了显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Approximate encoding of quantum states using shallow circuits

Approximate encoding of quantum states using shallow circuits

Quantum algorithms and simulations often require the preparation of complex states through sequences of 2-qubit gates. For a generic quantum state, the number of required gates grows exponentially with the number of qubits, becoming unfeasible on near-term quantum devices. Here, we aim at creating an approximate encoding of the target state using a limited number of gates. As a first step, we consider a quantum state that is efficiently represented classically, such as a one-dimensional matrix product state. Using tensor network techniques, we develop and implement an efficient optimization algorithm that approaches the optimal implementation, requiring a polynomial number of iterations. We, next, consider the implementation of the proposed optimization algorithm directly on a quantum computer and overcome inherent barren plateaus by employing a local cost function. Our work offers a universal method to prepare target states using local gates and represents a significant improvement over known strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信