{"title":"密度矩阵的克利福德代数:初级方法","authors":"Pedro Amao, Hernan Castillo","doi":"10.1007/s00006-024-01337-8","DOIUrl":null,"url":null,"abstract":"<div><p>This work studies the Clifford algebra approach to the density matrix. We discuss elementary examples of pure and mixed states by writing the density matrix as an element of the Clifford algebra of the three-dimensional space <span>\\(Cl_3\\)</span>. We also revisit the phenomenon of Larmor precession within the framework of Clifford algebra. Additionally, we discuss the geometrical interpretation of the so-called Clifford Density Element (CDE) for pure states in analogy to the Bloch sphere of conventional quantum theory. Finally, we discuss the dynamics of the CDE, which obeys an algebraic form of the Liouville von–Neumann equation.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Clifford Algebra of the Density Matrix: An Elementary Approach\",\"authors\":\"Pedro Amao, Hernan Castillo\",\"doi\":\"10.1007/s00006-024-01337-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work studies the Clifford algebra approach to the density matrix. We discuss elementary examples of pure and mixed states by writing the density matrix as an element of the Clifford algebra of the three-dimensional space <span>\\\\(Cl_3\\\\)</span>. We also revisit the phenomenon of Larmor precession within the framework of Clifford algebra. Additionally, we discuss the geometrical interpretation of the so-called Clifford Density Element (CDE) for pure states in analogy to the Bloch sphere of conventional quantum theory. Finally, we discuss the dynamics of the CDE, which obeys an algebraic form of the Liouville von–Neumann equation.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"34 3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-024-01337-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01337-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The Clifford Algebra of the Density Matrix: An Elementary Approach
This work studies the Clifford algebra approach to the density matrix. We discuss elementary examples of pure and mixed states by writing the density matrix as an element of the Clifford algebra of the three-dimensional space \(Cl_3\). We also revisit the phenomenon of Larmor precession within the framework of Clifford algebra. Additionally, we discuss the geometrical interpretation of the so-called Clifford Density Element (CDE) for pure states in analogy to the Bloch sphere of conventional quantum theory. Finally, we discuss the dynamics of the CDE, which obeys an algebraic form of the Liouville von–Neumann equation.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.