Jiyi Zhang, Huanhuan Liu, Tianzi Wei, Ruitong Liu, Chunwang Jia, Fan Yang
{"title":"基于几何代数的多维统一凹凸检测方法","authors":"Jiyi Zhang, Huanhuan Liu, Tianzi Wei, Ruitong Liu, Chunwang Jia, Fan Yang","doi":"10.1007/s00006-024-01332-z","DOIUrl":null,"url":null,"abstract":"<div><p>Detecting the concavity and convexity of three-dimensional (3D) geometric objects is a well-established challenge in the realm of computer graphics. Serving as the cornerstone for various related graphics algorithms and operations, researchers have put forth numerous algorithms for discerning the concavity and convexity of such objects. The majority of existing methods primarily rely on Euclidean geometry, determining concavity and convexity by calculating the vertices of these objects. However, within the realm of Euclidean geometric space, there exists a lack of uniformity in the expression and calculation rules for geometric objects of differing dimensions. Consequently, distinct concavity and convexity detection algorithms must be tailored for geometric objects with varying dimensions. This approach inevitably results in heightened complexity and instability within the algorithmic structure. To address these aforementioned issues, this paper introduces geometric algebra theory into the domain of concavity and convexity detection within 3D spatial objects. With the algorithms devised in this study, it becomes feasible to detect concavity and convexity for geometric objects of varying dimensions, all based on a uniform set of criteria. In comparison to concavity-convexity detection algorithms grounded in Euclidean geometry, this research effectively streamlines the algorithmic structure.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-dimensional Unified Concavity and Convexity Detection Method Based on Geometric Algebra\",\"authors\":\"Jiyi Zhang, Huanhuan Liu, Tianzi Wei, Ruitong Liu, Chunwang Jia, Fan Yang\",\"doi\":\"10.1007/s00006-024-01332-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Detecting the concavity and convexity of three-dimensional (3D) geometric objects is a well-established challenge in the realm of computer graphics. Serving as the cornerstone for various related graphics algorithms and operations, researchers have put forth numerous algorithms for discerning the concavity and convexity of such objects. The majority of existing methods primarily rely on Euclidean geometry, determining concavity and convexity by calculating the vertices of these objects. However, within the realm of Euclidean geometric space, there exists a lack of uniformity in the expression and calculation rules for geometric objects of differing dimensions. Consequently, distinct concavity and convexity detection algorithms must be tailored for geometric objects with varying dimensions. This approach inevitably results in heightened complexity and instability within the algorithmic structure. To address these aforementioned issues, this paper introduces geometric algebra theory into the domain of concavity and convexity detection within 3D spatial objects. With the algorithms devised in this study, it becomes feasible to detect concavity and convexity for geometric objects of varying dimensions, all based on a uniform set of criteria. In comparison to concavity-convexity detection algorithms grounded in Euclidean geometry, this research effectively streamlines the algorithmic structure.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-024-01332-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01332-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Multi-dimensional Unified Concavity and Convexity Detection Method Based on Geometric Algebra
Detecting the concavity and convexity of three-dimensional (3D) geometric objects is a well-established challenge in the realm of computer graphics. Serving as the cornerstone for various related graphics algorithms and operations, researchers have put forth numerous algorithms for discerning the concavity and convexity of such objects. The majority of existing methods primarily rely on Euclidean geometry, determining concavity and convexity by calculating the vertices of these objects. However, within the realm of Euclidean geometric space, there exists a lack of uniformity in the expression and calculation rules for geometric objects of differing dimensions. Consequently, distinct concavity and convexity detection algorithms must be tailored for geometric objects with varying dimensions. This approach inevitably results in heightened complexity and instability within the algorithmic structure. To address these aforementioned issues, this paper introduces geometric algebra theory into the domain of concavity and convexity detection within 3D spatial objects. With the algorithms devised in this study, it becomes feasible to detect concavity and convexity for geometric objects of varying dimensions, all based on a uniform set of criteria. In comparison to concavity-convexity detection algorithms grounded in Euclidean geometry, this research effectively streamlines the algorithmic structure.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.