利用计算机模拟提高学习者对反应动力学概念的理解--案例研究法

IF 2.2 3区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Samuel Jere, Mamotena Mpeta
{"title":"利用计算机模拟提高学习者对反应动力学概念的理解--案例研究法","authors":"Samuel Jere, Mamotena Mpeta","doi":"10.1007/s11165-024-10182-5","DOIUrl":null,"url":null,"abstract":"<p>One of the critical goals of teaching chemistry is to enable learners to gain conceptual understanding. Traditional instruction has often been associated with rote memorisation, resulting in learners failing to explain observed chemical phenomena, make predictions based on acquired concepts, advance convincing arguments, and engage in meaningful problem-solving and critical thinking. Therefore, the study aimed to describe the conceptual understanding of the learners taught Reaction Kinetics using computer simulations supported by the Predict-Observe-Explain strategy. The study was guided by Holme, Luxford, and Brandriet’s five categories of conceptual understanding—transfer, translation, problem-solving, prediction, and depth as the conceptual framework. This was a descriptive study in which a case study research approach was used. Five purposively sampled grade 12 learners participated in the study, representing the range of cognitive abilities from a secondary school class of 53 learners. Semi-structured interviews were used to collect data. The responses of the five participants were analysed using the qualitative content analysis. The findings were that most of the learners’ responses were in the sound understanding sub-category, some were in the partial understanding sub-category, and a few were in the no understanding sub-category, which made us conclude that computer simulations supported by the Predict-Observe-Explain strategy assisted the learners in conceptual understanding. The learners gained an understanding of most concepts, although their responses in the partial understanding sub-category showed difficulties related to depth, transfer, and translation. These findings are expected to assist chemistry teachers, teacher educators, and curriculum planners in improving learners’ conceptual understanding of chemistry.</p>","PeriodicalId":47988,"journal":{"name":"Research in Science Education","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Learners’ Conceptual Understanding of Reaction Kinetics Using Computer Simulations – A Case Study Approach\",\"authors\":\"Samuel Jere, Mamotena Mpeta\",\"doi\":\"10.1007/s11165-024-10182-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the critical goals of teaching chemistry is to enable learners to gain conceptual understanding. Traditional instruction has often been associated with rote memorisation, resulting in learners failing to explain observed chemical phenomena, make predictions based on acquired concepts, advance convincing arguments, and engage in meaningful problem-solving and critical thinking. Therefore, the study aimed to describe the conceptual understanding of the learners taught Reaction Kinetics using computer simulations supported by the Predict-Observe-Explain strategy. The study was guided by Holme, Luxford, and Brandriet’s five categories of conceptual understanding—transfer, translation, problem-solving, prediction, and depth as the conceptual framework. This was a descriptive study in which a case study research approach was used. Five purposively sampled grade 12 learners participated in the study, representing the range of cognitive abilities from a secondary school class of 53 learners. Semi-structured interviews were used to collect data. The responses of the five participants were analysed using the qualitative content analysis. The findings were that most of the learners’ responses were in the sound understanding sub-category, some were in the partial understanding sub-category, and a few were in the no understanding sub-category, which made us conclude that computer simulations supported by the Predict-Observe-Explain strategy assisted the learners in conceptual understanding. The learners gained an understanding of most concepts, although their responses in the partial understanding sub-category showed difficulties related to depth, transfer, and translation. These findings are expected to assist chemistry teachers, teacher educators, and curriculum planners in improving learners’ conceptual understanding of chemistry.</p>\",\"PeriodicalId\":47988,\"journal\":{\"name\":\"Research in Science Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Science Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1007/s11165-024-10182-5\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11165-024-10182-5","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

化学教学的关键目标之一是让学习者获得对概念的理解。傳統教學往往與死記硬背有關,導致學習者無法解釋觀察到的化學現 象、根據已掌握的概念作出預測、提出令人信服的論據,以及參與有意義的解 決問題和批判性思考。因此,本研究旨在描述学习者在 "预测-观察-解释 "策略的支持下,利用计算机模拟进行反应动力学教学时对概念的理解。本研究以 Holme、Luxford 和 Brandriet 提出的概念理解的五个类别--迁移、翻译、问题解决、预测和深度--为概念框架。这是一项描述性研究,采用的是案例研究法。研究有目的地抽取了五名十二年级学生参与研究,他们代表了一个中学班级 53 名学生的认知能力。研究采用半结构式访谈收集数据。我们采用定性内容分析法对五名参与者的回答进行了分析。分析结果表明,大部分学习者的回答属于 "正确理解 "子类别,部分属于 "部分理解 "子类别,少数属于 "不理解 "子类别,由此我们得出结论,在 "预测-观察-解释 "策略支持下的计算机模拟有助于学习者理解概念。虽然学习者在 "部分理解 "子类别中的回答显示出与深度、迁移和翻译有关的困难,但他们还是理解了大多数概念。這些研究結果有助化學教師、師資培訓人員和課程規劃人員提升學習者對化學概念的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Learners’ Conceptual Understanding of Reaction Kinetics Using Computer Simulations – A Case Study Approach

Enhancing Learners’ Conceptual Understanding of Reaction Kinetics Using Computer Simulations – A Case Study Approach

One of the critical goals of teaching chemistry is to enable learners to gain conceptual understanding. Traditional instruction has often been associated with rote memorisation, resulting in learners failing to explain observed chemical phenomena, make predictions based on acquired concepts, advance convincing arguments, and engage in meaningful problem-solving and critical thinking. Therefore, the study aimed to describe the conceptual understanding of the learners taught Reaction Kinetics using computer simulations supported by the Predict-Observe-Explain strategy. The study was guided by Holme, Luxford, and Brandriet’s five categories of conceptual understanding—transfer, translation, problem-solving, prediction, and depth as the conceptual framework. This was a descriptive study in which a case study research approach was used. Five purposively sampled grade 12 learners participated in the study, representing the range of cognitive abilities from a secondary school class of 53 learners. Semi-structured interviews were used to collect data. The responses of the five participants were analysed using the qualitative content analysis. The findings were that most of the learners’ responses were in the sound understanding sub-category, some were in the partial understanding sub-category, and a few were in the no understanding sub-category, which made us conclude that computer simulations supported by the Predict-Observe-Explain strategy assisted the learners in conceptual understanding. The learners gained an understanding of most concepts, although their responses in the partial understanding sub-category showed difficulties related to depth, transfer, and translation. These findings are expected to assist chemistry teachers, teacher educators, and curriculum planners in improving learners’ conceptual understanding of chemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in Science Education
Research in Science Education EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
6.40
自引率
8.70%
发文量
45
期刊介绍: 2020 Five-Year Impact Factor: 4.021 2020 Impact Factor: 5.439 Ranking: 107/1319 (Education) – Scopus 2020 CiteScore 34.7 – Scopus Research in Science Education (RISE ) is highly regarded and widely recognised as a leading international journal for the promotion of scholarly science education research that is of interest to a wide readership. RISE publishes scholarly work that promotes science education research in all contexts and at all levels of education. This intention is aligned with the goals of Australasian Science Education Research Association (ASERA), the association connected with the journal. You should consider submitting your manscript to RISE if your research: Examines contexts such as early childhood, primary, secondary, tertiary, workplace, and informal learning as they relate to science education; and Advances our knowledge in science education research rather than reproducing what we already know. RISE will consider scholarly works that explore areas such as STEM, health, environment, cognitive science, neuroscience, psychology and higher education where science education is forefronted. The scholarly works of interest published within RISE reflect and speak to a diversity of opinions, approaches and contexts. Additionally, the journal’s editorial team welcomes a diversity of form in relation to science education-focused submissions. With this in mind, RISE seeks to publish empirical research papers. Empircal contributions are: Theoretically or conceptually grounded; Relevant to science education theory and practice; Highlight limitations of the study; and Identify possible future research opportunities. From time to time, we commission independent reviewers to undertake book reviews of recent monographs, edited collections and/or textbooks. Before you submit your manuscript to RISE, please consider the following checklist. Your paper is: No longer than 6000 words, including references. Sufficiently proof read to ensure strong grammar, syntax, coherence and good readability; Explicitly stating the significant and/or innovative contribution to the body of knowledge in your field in science education; Internationalised in the sense that your work has relevance beyond your context to a broader audience; and Making a contribution to the ongoing conversation by engaging substantively with prior research published in RISE. While we encourage authors to submit papers to a maximum length of 6000 words, in rare cases where the authors make a persuasive case that a work makes a highly significant original contribution to knowledge in science education, the editors may choose to publish longer works.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信