{"title":"通过卤素键辅助共晶和自由基固相聚合驱动的双聚集诱导发射增强(AIEE)和交联增强发射(CEE)","authors":"","doi":"10.1039/d4py00533c","DOIUrl":null,"url":null,"abstract":"<div><p>Halogen bonding (XB) was used to drive aggregation-induced emission enhancement (AIEE) and crosslink-enhanced emission (CEE) in a concurrent manner. Weak luminophores and vinyl monomers were cocrystallized <em>via</em> XB to drive AIEE, the obtained monomer cocrystal solids were subsequently polymerized <em>via</em> free-radical solid-phase polymerization (SPP) to drive CEE. Weak luminophores containing bromine (Br) and vinyl monomers containing nitrogen (N) or oxygen (O) were combined to form XB-based monomer cocrystals (Br⋯N and Br⋯O bonds), which exhibited AIEE, and the subsequent polymerization of the obtained cocrystals enabled the weak luminophores to be incorporated into the polymer matrix. The resultant restriction of the vibrational and rotational motions of the luminophores led to CEE. The obtained luminophore-embedded emissive sheets exhibited stimuli-responsiveness to temperatures, pH, and solvents, and served as stimuli-responsive emissive polymers. The sheets also served as host–guest interactive materials.</p></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"15 28","pages":"Pages 2873-2882"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/py/d4py00533c?page=search","citationCount":"0","resultStr":"{\"title\":\"Dual aggregation-induced emission enhancement (AIEE) and crosslink-enhanced emission (CEE) driven via halogen-bond-assisted cocrystallization and radical solid-phase polymerization†\",\"authors\":\"\",\"doi\":\"10.1039/d4py00533c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Halogen bonding (XB) was used to drive aggregation-induced emission enhancement (AIEE) and crosslink-enhanced emission (CEE) in a concurrent manner. Weak luminophores and vinyl monomers were cocrystallized <em>via</em> XB to drive AIEE, the obtained monomer cocrystal solids were subsequently polymerized <em>via</em> free-radical solid-phase polymerization (SPP) to drive CEE. Weak luminophores containing bromine (Br) and vinyl monomers containing nitrogen (N) or oxygen (O) were combined to form XB-based monomer cocrystals (Br⋯N and Br⋯O bonds), which exhibited AIEE, and the subsequent polymerization of the obtained cocrystals enabled the weak luminophores to be incorporated into the polymer matrix. The resultant restriction of the vibrational and rotational motions of the luminophores led to CEE. The obtained luminophore-embedded emissive sheets exhibited stimuli-responsiveness to temperatures, pH, and solvents, and served as stimuli-responsive emissive polymers. The sheets also served as host–guest interactive materials.</p></div>\",\"PeriodicalId\":100,\"journal\":{\"name\":\"Polymer Chemistry\",\"volume\":\"15 28\",\"pages\":\"Pages 2873-2882\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/py/d4py00533c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1759995424002390\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1759995424002390","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Dual aggregation-induced emission enhancement (AIEE) and crosslink-enhanced emission (CEE) driven via halogen-bond-assisted cocrystallization and radical solid-phase polymerization†
Halogen bonding (XB) was used to drive aggregation-induced emission enhancement (AIEE) and crosslink-enhanced emission (CEE) in a concurrent manner. Weak luminophores and vinyl monomers were cocrystallized via XB to drive AIEE, the obtained monomer cocrystal solids were subsequently polymerized via free-radical solid-phase polymerization (SPP) to drive CEE. Weak luminophores containing bromine (Br) and vinyl monomers containing nitrogen (N) or oxygen (O) were combined to form XB-based monomer cocrystals (Br⋯N and Br⋯O bonds), which exhibited AIEE, and the subsequent polymerization of the obtained cocrystals enabled the weak luminophores to be incorporated into the polymer matrix. The resultant restriction of the vibrational and rotational motions of the luminophores led to CEE. The obtained luminophore-embedded emissive sheets exhibited stimuli-responsiveness to temperatures, pH, and solvents, and served as stimuli-responsive emissive polymers. The sheets also served as host–guest interactive materials.
期刊介绍:
Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.