通过毛细管震荡诱导转换测定法(Cap-QuIC)目视检测折叠错误的α-突触核蛋白和朊病毒

Peter R. Christenson, Hyeonjeong Jeong, Hyerim Ahn, Manci Li, Gage Rowden, Rachel L. Shoemaker, Peter A. Larsen, Hye Yoon Park, Sang-Hyun Oh
{"title":"通过毛细管震荡诱导转换测定法(Cap-QuIC)目视检测折叠错误的α-突触核蛋白和朊病毒","authors":"Peter R. Christenson, Hyeonjeong Jeong, Hyerim Ahn, Manci Li, Gage Rowden, Rachel L. Shoemaker, Peter A. Larsen, Hye Yoon Park, Sang-Hyun Oh","doi":"10.1038/s44328-024-00003-0","DOIUrl":null,"url":null,"abstract":"Neurodegenerative protein misfolding diseases impact tens of millions of people worldwide, contributing to millions of deaths and economic hardships across multiple scales. The prevalence of neurodegenerative disease is predicted to greatly increase over the coming decades, yet effective diagnostics for such diseases are limited. Most diagnoses come from the observation of external symptoms in clinical settings, which typically manifest during relatively advanced stages of disease, thus limiting potential therapeutic applications. While progress is being made on biomarker testing, the underlying methods largely rely on fragile and expensive equipment that limits their point-of-care potential, especially in developing countries. Here we present Capillary-based Quaking Induced Conversion (Cap-QuIC) as a visual diagnostic assay based on simple capillary action for the detection of neurodegenerative disease without necessitating expensive and complex capital equipment. We demonstrate that Cap-QuIC has the potential to be a detection tool for a broad range of misfolded proteins by successfully distinguishing misfolded versus healthy proteins associated with Parkinson’s disease (α-synuclein) and Chronic Wasting Disease (prions). Additionally, we show that Cap-QuIC can accurately classify biological tissue samples from wild white-tailed deer infected with Chronic Wasting Disease. Our findings elucidate the underlying mechanism that enables the Cap-QuIC assay to distinguish misfolded protein, highlighting its potential as a diagnostic technology for neurodegenerative diseases.","PeriodicalId":501705,"journal":{"name":"npj Biosensing","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44328-024-00003-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Visual detection of misfolded alpha-synuclein and prions via capillary-based quaking-induced conversion assay (Cap-QuIC)\",\"authors\":\"Peter R. Christenson, Hyeonjeong Jeong, Hyerim Ahn, Manci Li, Gage Rowden, Rachel L. Shoemaker, Peter A. Larsen, Hye Yoon Park, Sang-Hyun Oh\",\"doi\":\"10.1038/s44328-024-00003-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neurodegenerative protein misfolding diseases impact tens of millions of people worldwide, contributing to millions of deaths and economic hardships across multiple scales. The prevalence of neurodegenerative disease is predicted to greatly increase over the coming decades, yet effective diagnostics for such diseases are limited. Most diagnoses come from the observation of external symptoms in clinical settings, which typically manifest during relatively advanced stages of disease, thus limiting potential therapeutic applications. While progress is being made on biomarker testing, the underlying methods largely rely on fragile and expensive equipment that limits their point-of-care potential, especially in developing countries. Here we present Capillary-based Quaking Induced Conversion (Cap-QuIC) as a visual diagnostic assay based on simple capillary action for the detection of neurodegenerative disease without necessitating expensive and complex capital equipment. We demonstrate that Cap-QuIC has the potential to be a detection tool for a broad range of misfolded proteins by successfully distinguishing misfolded versus healthy proteins associated with Parkinson’s disease (α-synuclein) and Chronic Wasting Disease (prions). Additionally, we show that Cap-QuIC can accurately classify biological tissue samples from wild white-tailed deer infected with Chronic Wasting Disease. Our findings elucidate the underlying mechanism that enables the Cap-QuIC assay to distinguish misfolded protein, highlighting its potential as a diagnostic technology for neurodegenerative diseases.\",\"PeriodicalId\":501705,\"journal\":{\"name\":\"npj Biosensing\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44328-024-00003-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biosensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44328-024-00003-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biosensing","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44328-024-00003-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性蛋白质错误折叠疾病影响着全球数千万人,导致数百万人死亡,并造成多方面的经济困难。据预测,神经退行性疾病的发病率将在未来几十年内大幅上升,但此类疾病的有效诊断方法却十分有限。大多数诊断都是在临床环境中通过观察外部症状得出的,而这些症状通常表现在疾病的相对晚期阶段,因此限制了潜在的治疗应用。虽然生物标志物检测正在取得进展,但其基本方法主要依赖于脆弱而昂贵的设备,这限制了其在医疗点的应用潜力,尤其是在发展中国家。在此,我们介绍基于毛细管的震荡诱导转化(Cap-QuIC),这是一种基于简单毛细管作用的可视化诊断测定,用于检测神经退行性疾病,无需昂贵而复杂的资本设备。通过成功区分与帕金森病(α-突触核蛋白)和慢性消耗性疾病(朊病毒)相关的错误折叠蛋白和健康蛋白,我们证明 Cap-QuIC 有潜力成为检测各种错误折叠蛋白的工具。此外,我们还发现 Cap-QuIC 能够对感染慢性消耗性疾病的野生白尾鹿生物组织样本进行准确分类。我们的研究结果阐明了Cap-QuIC检测法区分错误折叠蛋白的内在机制,凸显了它作为神经退行性疾病诊断技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Visual detection of misfolded alpha-synuclein and prions via capillary-based quaking-induced conversion assay (Cap-QuIC)

Visual detection of misfolded alpha-synuclein and prions via capillary-based quaking-induced conversion assay (Cap-QuIC)
Neurodegenerative protein misfolding diseases impact tens of millions of people worldwide, contributing to millions of deaths and economic hardships across multiple scales. The prevalence of neurodegenerative disease is predicted to greatly increase over the coming decades, yet effective diagnostics for such diseases are limited. Most diagnoses come from the observation of external symptoms in clinical settings, which typically manifest during relatively advanced stages of disease, thus limiting potential therapeutic applications. While progress is being made on biomarker testing, the underlying methods largely rely on fragile and expensive equipment that limits their point-of-care potential, especially in developing countries. Here we present Capillary-based Quaking Induced Conversion (Cap-QuIC) as a visual diagnostic assay based on simple capillary action for the detection of neurodegenerative disease without necessitating expensive and complex capital equipment. We demonstrate that Cap-QuIC has the potential to be a detection tool for a broad range of misfolded proteins by successfully distinguishing misfolded versus healthy proteins associated with Parkinson’s disease (α-synuclein) and Chronic Wasting Disease (prions). Additionally, we show that Cap-QuIC can accurately classify biological tissue samples from wild white-tailed deer infected with Chronic Wasting Disease. Our findings elucidate the underlying mechanism that enables the Cap-QuIC assay to distinguish misfolded protein, highlighting its potential as a diagnostic technology for neurodegenerative diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信