小红雀的全苏树林

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Assaf Rinot, Shira Yadai, Zhixing You
{"title":"小红雀的全苏树林","authors":"Assaf Rinot,&nbsp;Shira Yadai,&nbsp;Zhixing You","doi":"10.1112/jlms.12957","DOIUrl":null,"url":null,"abstract":"<p>A <span></span><math>\n <semantics>\n <mi>κ</mi>\n <annotation>$\\kappa$</annotation>\n </semantics></math>-tree is <i>full</i> if each of its limit levels omits no more than one potential branch. Kunen asked whether a full <span></span><math>\n <semantics>\n <mi>κ</mi>\n <annotation>$\\kappa$</annotation>\n </semantics></math>-Souslin tree may consistently exist. Shelah gave an affirmative answer of height a strong limit Mahlo cardinal <span></span><math>\n <semantics>\n <mi>κ</mi>\n <annotation>$\\kappa $</annotation>\n </semantics></math>. Here, it is shown that these trees may consistently exist at small cardinals. Indeed, there can be <span></span><math>\n <semantics>\n <msub>\n <mi>ℵ</mi>\n <mn>3</mn>\n </msub>\n <annotation>$\\aleph _3$</annotation>\n </semantics></math> many full <span></span><math>\n <semantics>\n <msub>\n <mi>ℵ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\aleph _2$</annotation>\n </semantics></math>-trees such that the product of any countably many of them is an <span></span><math>\n <semantics>\n <msub>\n <mi>ℵ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\aleph _2$</annotation>\n </semantics></math>-Souslin tree.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12957","citationCount":"0","resultStr":"{\"title\":\"Full Souslin trees at small cardinals\",\"authors\":\"Assaf Rinot,&nbsp;Shira Yadai,&nbsp;Zhixing You\",\"doi\":\"10.1112/jlms.12957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <span></span><math>\\n <semantics>\\n <mi>κ</mi>\\n <annotation>$\\\\kappa$</annotation>\\n </semantics></math>-tree is <i>full</i> if each of its limit levels omits no more than one potential branch. Kunen asked whether a full <span></span><math>\\n <semantics>\\n <mi>κ</mi>\\n <annotation>$\\\\kappa$</annotation>\\n </semantics></math>-Souslin tree may consistently exist. Shelah gave an affirmative answer of height a strong limit Mahlo cardinal <span></span><math>\\n <semantics>\\n <mi>κ</mi>\\n <annotation>$\\\\kappa $</annotation>\\n </semantics></math>. Here, it is shown that these trees may consistently exist at small cardinals. Indeed, there can be <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>3</mn>\\n </msub>\\n <annotation>$\\\\aleph _3$</annotation>\\n </semantics></math> many full <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\aleph _2$</annotation>\\n </semantics></math>-trees such that the product of any countably many of them is an <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\aleph _2$</annotation>\\n </semantics></math>-Souslin tree.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12957\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12957\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12957","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

如果κ $kappa$ -树的每个极限层都没有遗漏一个以上的潜在分支,那么这棵树就是完整的。库能(Kunen)问,一棵完整的κ $kappa$ -Souslin 树是否可能一直存在。谢拉给出了一个肯定的答案,即高度强极限马赫洛红心κ $\kappa $ 。这里,我们证明了这些树在小红心时可能一直存在。事实上,可以有ℵ 3 $\aleph _3$很多棵完整的ℵ 2 $\aleph _2$-树,使得其中任意可数棵树的乘积都是一棵ℵ 2 $\aleph _2$-苏林树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full Souslin trees at small cardinals

A κ $\kappa$ -tree is full if each of its limit levels omits no more than one potential branch. Kunen asked whether a full κ $\kappa$ -Souslin tree may consistently exist. Shelah gave an affirmative answer of height a strong limit Mahlo cardinal κ $\kappa $ . Here, it is shown that these trees may consistently exist at small cardinals. Indeed, there can be 3 $\aleph _3$ many full 2 $\aleph _2$ -trees such that the product of any countably many of them is an 2 $\aleph _2$ -Souslin tree.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信