绿色和褐色收获制度下对比鲜明的马齿苋杂交种的产量发展和养分吸收情况

IF 5.9 3区 工程技术 Q1 AGRONOMY
Eva Lewin, John Clifton Brown, Elena Magenau, Elaine Jensen, Anja Mangold, Iris Lewandowski, Andreas Kiesel
{"title":"绿色和褐色收获制度下对比鲜明的马齿苋杂交种的产量发展和养分吸收情况","authors":"Eva Lewin,&nbsp;John Clifton Brown,&nbsp;Elena Magenau,&nbsp;Elaine Jensen,&nbsp;Anja Mangold,&nbsp;Iris Lewandowski,&nbsp;Andreas Kiesel","doi":"10.1111/gcbb.13149","DOIUrl":null,"url":null,"abstract":"<p>Harvest time is an important variable that determines the yield of miscanthus biomass, its possible end uses, and the nutrient offtake from the field. Green harvests result in a higher yield and greater nutrient removal from the field. Brown miscanthus harvests, carried out in late winter or early spring, result in lower yields and a lower nutrient offtake, whereby the harvested biomass is better suited to use in combustion. To look at the long-term impact of green harvests on miscanthus, this experiment followed the yield development of two miscanthus hybrids subjected to green and brown harvests over a period of seven years at one site in Southern Germany. The standard commercial hybrid <i>Miscanthus × giganteus</i> (<i>Mxg</i>) was compared with a novel late-ripening <i>Miscanthus sinensis</i> hybrid: <i>Syn55</i>. Average yields of <i>Mxg</i> were 19.9 t ha<sup>−1</sup> for green harvests and 13.2 t ha<sup>−1</sup> for brown harvests compared to 13.9 and 12.9 t ha<sup>−1</sup> for green and brown harvested <i>Syn55</i>, respectively. Yields of <i>Mxg</i> were very different for green and brown harvests; green harvested <i>Mxg</i> had very high nutrient offtake, while brown harvested <i>Mxg</i> had the lowest nutrient offtakes of all treatments. <i>Syn55</i> showed a less marked difference between green and brown harvests likely due to its tendency to retain its leaves over winter. <i>Syn55</i> was however not tolerant of a green harvest, with yields of brown harvested stands surpassing the yield of green harvested stands in several years. Although <i>Mxg</i> demonstrated consistently high yields when harvested in October, some signs of yield decline were detected in both hybrids when harvested green, which was due to insufficient carbohydrate relocation. Alternating green and brown harvests are recommended to allow stands to replenish carbohydrate stores and to form a litter layer.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 8","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13149","citationCount":"0","resultStr":"{\"title\":\"Yield development and nutrient offtake in contrasting miscanthus hybrids under green and brown harvest regimes\",\"authors\":\"Eva Lewin,&nbsp;John Clifton Brown,&nbsp;Elena Magenau,&nbsp;Elaine Jensen,&nbsp;Anja Mangold,&nbsp;Iris Lewandowski,&nbsp;Andreas Kiesel\",\"doi\":\"10.1111/gcbb.13149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Harvest time is an important variable that determines the yield of miscanthus biomass, its possible end uses, and the nutrient offtake from the field. Green harvests result in a higher yield and greater nutrient removal from the field. Brown miscanthus harvests, carried out in late winter or early spring, result in lower yields and a lower nutrient offtake, whereby the harvested biomass is better suited to use in combustion. To look at the long-term impact of green harvests on miscanthus, this experiment followed the yield development of two miscanthus hybrids subjected to green and brown harvests over a period of seven years at one site in Southern Germany. The standard commercial hybrid <i>Miscanthus × giganteus</i> (<i>Mxg</i>) was compared with a novel late-ripening <i>Miscanthus sinensis</i> hybrid: <i>Syn55</i>. Average yields of <i>Mxg</i> were 19.9 t ha<sup>−1</sup> for green harvests and 13.2 t ha<sup>−1</sup> for brown harvests compared to 13.9 and 12.9 t ha<sup>−1</sup> for green and brown harvested <i>Syn55</i>, respectively. Yields of <i>Mxg</i> were very different for green and brown harvests; green harvested <i>Mxg</i> had very high nutrient offtake, while brown harvested <i>Mxg</i> had the lowest nutrient offtakes of all treatments. <i>Syn55</i> showed a less marked difference between green and brown harvests likely due to its tendency to retain its leaves over winter. <i>Syn55</i> was however not tolerant of a green harvest, with yields of brown harvested stands surpassing the yield of green harvested stands in several years. Although <i>Mxg</i> demonstrated consistently high yields when harvested in October, some signs of yield decline were detected in both hybrids when harvested green, which was due to insufficient carbohydrate relocation. Alternating green and brown harvests are recommended to allow stands to replenish carbohydrate stores and to form a litter layer.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"16 8\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13149\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13149\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13149","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

收获时间是一个重要的变量,它决定着马齿苋生物质的产量、可能的最终用途以及从田地中吸收的养分。绿色收割会带来更高的产量和更大的田间养分吸收量。在冬末春初收割糙叶马齿苋,产量较低,养分吸收量也较低,因此收割的生物质更适合用于燃烧。为了研究绿色收割对马齿苋的长期影响,本实验在德国南部的一个地点对两种马齿苋杂交种进行了为期七年的绿色和棕色收割,跟踪其产量发展情况。标准商业杂交种 Miscanthus × giganteus(Mxg)与新型晚熟杂交种 Miscanthus sinensis:Syn55 进行了比较。Mxg 绿色收获的平均产量为 19.9 吨/公顷,棕色收获的平均产量为 13.2 吨/公顷,而 Syn55 绿色收获的平均产量为 13.9 吨/公顷,棕色收获的平均产量为 12.9 吨/公顷。绿色和棕色收获的 Mxg 产量差别很大;绿色收获的 Mxg 对养分的吸收量很高,而棕色收获的 Mxg 对养分的吸收量在所有处理中最低。Syn55 在绿色收获和棕色收获之间的差异不太明显,这可能是由于它在冬季倾向于保留叶片。不过,Syn55 并不耐受绿色采收,几年中棕色采收的产量都超过了绿色采收的产量。虽然 Mxg 在 10 月份收获时产量一直很高,但在绿色收获时,两种杂交种都出现了一些产量下降的迹象,这是由于碳水化合物转移不足造成的。建议交替进行绿色和棕色收割,让林分补充碳水化合物储存并形成枯枝层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Yield development and nutrient offtake in contrasting miscanthus hybrids under green and brown harvest regimes

Yield development and nutrient offtake in contrasting miscanthus hybrids under green and brown harvest regimes

Harvest time is an important variable that determines the yield of miscanthus biomass, its possible end uses, and the nutrient offtake from the field. Green harvests result in a higher yield and greater nutrient removal from the field. Brown miscanthus harvests, carried out in late winter or early spring, result in lower yields and a lower nutrient offtake, whereby the harvested biomass is better suited to use in combustion. To look at the long-term impact of green harvests on miscanthus, this experiment followed the yield development of two miscanthus hybrids subjected to green and brown harvests over a period of seven years at one site in Southern Germany. The standard commercial hybrid Miscanthus × giganteus (Mxg) was compared with a novel late-ripening Miscanthus sinensis hybrid: Syn55. Average yields of Mxg were 19.9 t ha−1 for green harvests and 13.2 t ha−1 for brown harvests compared to 13.9 and 12.9 t ha−1 for green and brown harvested Syn55, respectively. Yields of Mxg were very different for green and brown harvests; green harvested Mxg had very high nutrient offtake, while brown harvested Mxg had the lowest nutrient offtakes of all treatments. Syn55 showed a less marked difference between green and brown harvests likely due to its tendency to retain its leaves over winter. Syn55 was however not tolerant of a green harvest, with yields of brown harvested stands surpassing the yield of green harvested stands in several years. Although Mxg demonstrated consistently high yields when harvested in October, some signs of yield decline were detected in both hybrids when harvested green, which was due to insufficient carbohydrate relocation. Alternating green and brown harvests are recommended to allow stands to replenish carbohydrate stores and to form a litter layer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology Bioenergy
Global Change Biology Bioenergy AGRONOMY-ENERGY & FUELS
CiteScore
10.30
自引率
7.10%
发文量
96
审稿时长
1.5 months
期刊介绍: GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used. Key areas covered by the journal: Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis). Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW). Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues. Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems. Bioenergy Policy: legislative developments affecting biofuels and bioenergy. Bioenergy Systems Analysis: examining biological developments in a whole systems context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信