量子计算中的萨尔纳克猜想、循环单元群角和志村曲线

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Colin Ingalls, Bruce W. Jordan, Allan Keeton, Adam Logan, Yevgeny Zaytman
{"title":"量子计算中的萨尔纳克猜想、循环单元群角和志村曲线","authors":"Colin Ingalls,&nbsp;Bruce W. Jordan,&nbsp;Allan Keeton,&nbsp;Adam Logan,&nbsp;Yevgeny Zaytman","doi":"10.1112/jlms.12952","DOIUrl":null,"url":null,"abstract":"<p>Sarnak's conjecture in quantum computing concerns when the groups <span></span><math>\n <semantics>\n <msub>\n <mo>PU</mo>\n <mn>2</mn>\n </msub>\n <annotation>$\\operatorname{PU}_{2}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mo>PSU</mo>\n <mn>2</mn>\n </msub>\n <annotation>$\\operatorname{PSU}_{2}$</annotation>\n </semantics></math> over cyclotomic rings <span></span><math>\n <semantics>\n <mrow>\n <mi>Z</mi>\n <mo>[</mo>\n <msub>\n <mi>ζ</mi>\n <mi>n</mi>\n </msub>\n <mo>,</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n <annotation>${\\mathbb {Z}}[\\zeta _{n}, 1/2]$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ζ</mi>\n <mi>n</mi>\n </msub>\n <mo>=</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mn>2</mn>\n <mi>π</mi>\n <mi>i</mi>\n <mo>/</mo>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\zeta _n=e^{2\\pi i/n}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>4</mn>\n <mo>|</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$4|n$</annotation>\n </semantics></math>, are generated by the Clifford-cyclotomic gate set. We previously settled this using Euler–Poincaré characteristics. A generalization of Sarnak's conjecture is to ask when these groups are generated by torsion elements. An obstruction to this is provided by the corank: a group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> has <span></span><math>\n <semantics>\n <mrow>\n <mo>corank</mo>\n <mi>G</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\operatorname{corank}G&amp;gt;0$</annotation>\n </semantics></math> only if <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is not generated by torsion elements. In this paper, we study the corank of these cyclotomic unitary groups in the families <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <mi>s</mi>\n </msup>\n </mrow>\n <annotation>$n=2^s$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mrow>\n <mn>3</mn>\n <mo>·</mo>\n <msup>\n <mn>2</mn>\n <mi>s</mi>\n </msup>\n </mrow>\n </mrow>\n <annotation>$n={3\\cdot 2^s}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>8</mn>\n </mrow>\n <annotation>$n\\geqslant 8$</annotation>\n </semantics></math>, by letting them act on Bruhat–Tits trees. The quotients by this action are finite graphs whose first Betti number is the corank of the group. Our main result is that for the families <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <mi>s</mi>\n </msup>\n </mrow>\n <annotation>$n=2^s$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>3</mn>\n <mo>·</mo>\n <msup>\n <mn>2</mn>\n <mi>s</mi>\n </msup>\n </mrow>\n <annotation>$n=3\\cdot 2^s$</annotation>\n </semantics></math>, the corank grows doubly exponentially in <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>$s$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$s\\rightarrow \\infty$</annotation>\n </semantics></math>; it is 0 precisely when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>8</mn>\n <mo>,</mo>\n <mn>12</mn>\n <mo>,</mo>\n <mn>16</mn>\n <mo>,</mo>\n <mn>24</mn>\n </mrow>\n <annotation>$n= 8,12, 16, 24$</annotation>\n </semantics></math>, and indeed, the cyclotomic unitary groups are generated by torsion elements (in fact by Clifford-cyclotomic gates) for these <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>. We give explicit lower bounds for the corank in two different ways. The first is to bound the isotropy subgroups in the action on the tree by explicit cyclotomy. The second is to relate our graphs to Shimura curves over <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mi>n</mi>\n </msub>\n <mo>=</mo>\n <mi>Q</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ζ</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation>$F_n={\\mathbf {Q}}(\\zeta _n)^+$</annotation>\n </semantics></math> via interchanging local invariants and applying a result of Selberg and Zograf. We show that the cyclotomy arguments give the stronger bounds. In a final section, we execute a program of Sarnak to show that our results for the <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <mi>s</mi>\n </msup>\n </mrow>\n <annotation>$n=2^s$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mrow>\n <mn>3</mn>\n <mo>·</mo>\n <msup>\n <mn>2</mn>\n <mi>s</mi>\n </msup>\n </mrow>\n </mrow>\n <annotation>$n={3\\cdot 2^s}$</annotation>\n </semantics></math> families are sufficient to give a second proof of Sarnak's conjecture.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sarnak's conjecture in quantum computing, cyclotomic unitary group coranks, and Shimura curves\",\"authors\":\"Colin Ingalls,&nbsp;Bruce W. Jordan,&nbsp;Allan Keeton,&nbsp;Adam Logan,&nbsp;Yevgeny Zaytman\",\"doi\":\"10.1112/jlms.12952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sarnak's conjecture in quantum computing concerns when the groups <span></span><math>\\n <semantics>\\n <msub>\\n <mo>PU</mo>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\operatorname{PU}_{2}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mo>PSU</mo>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\operatorname{PSU}_{2}$</annotation>\\n </semantics></math> over cyclotomic rings <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Z</mi>\\n <mo>[</mo>\\n <msub>\\n <mi>ζ</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>]</mo>\\n </mrow>\\n <annotation>${\\\\mathbb {Z}}[\\\\zeta _{n}, 1/2]$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ζ</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>=</mo>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>π</mi>\\n <mi>i</mi>\\n <mo>/</mo>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\zeta _n=e^{2\\\\pi i/n}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>4</mn>\\n <mo>|</mo>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$4|n$</annotation>\\n </semantics></math>, are generated by the Clifford-cyclotomic gate set. We previously settled this using Euler–Poincaré characteristics. A generalization of Sarnak's conjecture is to ask when these groups are generated by torsion elements. An obstruction to this is provided by the corank: a group <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> has <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>corank</mo>\\n <mi>G</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\operatorname{corank}G&amp;gt;0$</annotation>\\n </semantics></math> only if <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> is not generated by torsion elements. In this paper, we study the corank of these cyclotomic unitary groups in the families <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n <annotation>$n=2^s$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mrow>\\n <mn>3</mn>\\n <mo>·</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation>$n={3\\\\cdot 2^s}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>8</mn>\\n </mrow>\\n <annotation>$n\\\\geqslant 8$</annotation>\\n </semantics></math>, by letting them act on Bruhat–Tits trees. The quotients by this action are finite graphs whose first Betti number is the corank of the group. Our main result is that for the families <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n <annotation>$n=2^s$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n <mo>·</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n <annotation>$n=3\\\\cdot 2^s$</annotation>\\n </semantics></math>, the corank grows doubly exponentially in <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>$s$</annotation>\\n </semantics></math> as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$s\\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>; it is 0 precisely when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>8</mn>\\n <mo>,</mo>\\n <mn>12</mn>\\n <mo>,</mo>\\n <mn>16</mn>\\n <mo>,</mo>\\n <mn>24</mn>\\n </mrow>\\n <annotation>$n= 8,12, 16, 24$</annotation>\\n </semantics></math>, and indeed, the cyclotomic unitary groups are generated by torsion elements (in fact by Clifford-cyclotomic gates) for these <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>. We give explicit lower bounds for the corank in two different ways. The first is to bound the isotropy subgroups in the action on the tree by explicit cyclotomy. The second is to relate our graphs to Shimura curves over <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>=</mo>\\n <mi>Q</mi>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>ζ</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>+</mo>\\n </msup>\\n </mrow>\\n <annotation>$F_n={\\\\mathbf {Q}}(\\\\zeta _n)^+$</annotation>\\n </semantics></math> via interchanging local invariants and applying a result of Selberg and Zograf. We show that the cyclotomy arguments give the stronger bounds. In a final section, we execute a program of Sarnak to show that our results for the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n <annotation>$n=2^s$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mrow>\\n <mn>3</mn>\\n <mo>·</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation>$n={3\\\\cdot 2^s}$</annotation>\\n </semantics></math> families are sufficient to give a second proof of Sarnak's conjecture.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12952\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12952","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子计算中的萨纳克猜想涉及到当组 PU 2 $\operatorname{PU}_{2}$ 和 PSU 2 $\operatorname{PSU}_{2}$ 笼罩在环 Z [ ζ n , 1 / 2 ] 上时。 ${mathbb {Z}}[\zeta _{n}, 1/2]$ with ζ n = e 2 π i / n $\zeta _n=e^{2\pi i/n}$ , 4 | n $4|n$ , 是由克利福德-环原子门集生成的。我们之前利用欧拉-庞加莱特性解决了这个问题。萨纳克猜想的一个推广问题是这些群何时由扭转元素生成。corank 对此提供了一个障碍:只有当 G $G$ 不是由扭转元素生成时,群 G $G$ 才有 corank G &gt; 0 $operatorname{corank}G&amp;gt;0$。在本文中,我们通过让这些单元群作用于布鲁哈特-提茨树(Bruhat-Tits tree),研究了这些单元群在 n = 2 s $n=2^s$ 和 n = 3 - 2 s $n={3\cdot 2^s}$ ,n ⩾ 8 $n\geqslant 8$ 族中的角群。这种作用的商是有限图,其第一个贝蒂数是群的角。我们的主要结果是,对于 n = 2 s $n=2^s$ 和 n = 3 - 2 s $n=3\cdot 2^s$ 这两个族,当 s →∞ $s\rightarrow \infty$时,corank 在 s $s$ 中以双倍指数增长;而当 n = 8 , 12 , 16 , 24 $n= 8 , 12 , 16 , 24$ 时,corank 恰好为 0。我们用两种不同的方法给出了 corank 的明确下限。第一种方法是通过显式环切来约束树作用中的各向同性子群。第二种是将我们的图与 F n = Q ( ζ n ) 上的志村曲线联系起来。 + $F_n=\{mathbf {Q}}(\zeta _n)^+$ 通过交换局部不变式并应用塞尔伯格和佐格拉夫的一个结果。我们证明循环论证给出了更强的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sarnak's conjecture in quantum computing, cyclotomic unitary group coranks, and Shimura curves

Sarnak's conjecture in quantum computing concerns when the groups PU 2 $\operatorname{PU}_{2}$ and PSU 2 $\operatorname{PSU}_{2}$ over cyclotomic rings Z [ ζ n , 1 / 2 ] ${\mathbb {Z}}[\zeta _{n}, 1/2]$ with ζ n = e 2 π i / n $\zeta _n=e^{2\pi i/n}$ , 4 | n $4|n$ , are generated by the Clifford-cyclotomic gate set. We previously settled this using Euler–Poincaré characteristics. A generalization of Sarnak's conjecture is to ask when these groups are generated by torsion elements. An obstruction to this is provided by the corank: a group G $G$ has corank G > 0 $\operatorname{corank}G&gt;0$ only if G $G$ is not generated by torsion elements. In this paper, we study the corank of these cyclotomic unitary groups in the families n = 2 s $n=2^s$ and n = 3 · 2 s $n={3\cdot 2^s}$ , n 8 $n\geqslant 8$ , by letting them act on Bruhat–Tits trees. The quotients by this action are finite graphs whose first Betti number is the corank of the group. Our main result is that for the families n = 2 s $n=2^s$ and n = 3 · 2 s $n=3\cdot 2^s$ , the corank grows doubly exponentially in s $s$ as s $s\rightarrow \infty$ ; it is 0 precisely when n = 8 , 12 , 16 , 24 $n= 8,12, 16, 24$ , and indeed, the cyclotomic unitary groups are generated by torsion elements (in fact by Clifford-cyclotomic gates) for these n $n$ . We give explicit lower bounds for the corank in two different ways. The first is to bound the isotropy subgroups in the action on the tree by explicit cyclotomy. The second is to relate our graphs to Shimura curves over F n = Q ( ζ n ) + $F_n={\mathbf {Q}}(\zeta _n)^+$ via interchanging local invariants and applying a result of Selberg and Zograf. We show that the cyclotomy arguments give the stronger bounds. In a final section, we execute a program of Sarnak to show that our results for the n = 2 s $n=2^s$ and n = 3 · 2 s $n={3\cdot 2^s}$ families are sufficient to give a second proof of Sarnak's conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信