Stefanie A. Zimmermann , Stig Moberg , Svante Gunnarsson , Martin Enqvist
{"title":"在实验设计中使用统计线性化技术识别机器人操纵器","authors":"Stefanie A. Zimmermann , Stig Moberg , Svante Gunnarsson , Martin Enqvist","doi":"10.1016/j.conengprac.2024.106008","DOIUrl":null,"url":null,"abstract":"<div><p>It is shown how nonlinear joint stiffness in industrial robots can be determined quickly and accurately through a combination of statistical linearization and optimized data acquisition configurations. The statistical linearization is carried out using the histogram of the measured motor torques. The result of this linearization is used in a criterion that is minimized to determine optimal configurations for data collection. The proposed approach is validated using data from both simulations and experiments with a medium-size industrial robot. In both cases, there is a significant improvement in accuracy compared to both using conventional linearization and collecting data in a larger but random set of configurations.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0967066124001680/pdfft?md5=5b4058a325b6ba38678da304aab9ab96&pid=1-s2.0-S0967066124001680-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Using statistical linearization in experiment design for identification of robotic manipulators\",\"authors\":\"Stefanie A. Zimmermann , Stig Moberg , Svante Gunnarsson , Martin Enqvist\",\"doi\":\"10.1016/j.conengprac.2024.106008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is shown how nonlinear joint stiffness in industrial robots can be determined quickly and accurately through a combination of statistical linearization and optimized data acquisition configurations. The statistical linearization is carried out using the histogram of the measured motor torques. The result of this linearization is used in a criterion that is minimized to determine optimal configurations for data collection. The proposed approach is validated using data from both simulations and experiments with a medium-size industrial robot. In both cases, there is a significant improvement in accuracy compared to both using conventional linearization and collecting data in a larger but random set of configurations.</p></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0967066124001680/pdfft?md5=5b4058a325b6ba38678da304aab9ab96&pid=1-s2.0-S0967066124001680-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124001680\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124001680","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Using statistical linearization in experiment design for identification of robotic manipulators
It is shown how nonlinear joint stiffness in industrial robots can be determined quickly and accurately through a combination of statistical linearization and optimized data acquisition configurations. The statistical linearization is carried out using the histogram of the measured motor torques. The result of this linearization is used in a criterion that is minimized to determine optimal configurations for data collection. The proposed approach is validated using data from both simulations and experiments with a medium-size industrial robot. In both cases, there is a significant improvement in accuracy compared to both using conventional linearization and collecting data in a larger but random set of configurations.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.