头部姿势和面部表情:自动人脸识别算法面临的挑战?

IF 1.9 4区 医学 Q2 MEDICINE, LEGAL
Petra Urbanova , Tomas Goldmann , Dominik Cerny , Martin Drahansky
{"title":"头部姿势和面部表情:自动人脸识别算法面临的挑战?","authors":"Petra Urbanova ,&nbsp;Tomas Goldmann ,&nbsp;Dominik Cerny ,&nbsp;Martin Drahansky","doi":"10.1016/j.scijus.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>In today’s biometric and commercial settings, state-of-the-art image processing relies solely on artificial intelligence and machine learning which provides a high level of accuracy. However, these principles are deeply rooted in abstract, complex “black-box systems”. When applied to forensic image identification, concerns about transparency and accountability emerge. This study explores the impact of two challenging factors in automated facial identification: facial expressions and head poses. The sample comprised 3D faces with nine prototype expressions, collected from 41 participants (13 males, 28 females) of European descent aged 19.96 to 50.89 years. Pre-processing involved converting 3D models to 2D color images (256 × 256 px). Probes included a set of 9 images per individual with head poses varying by 5° in both left-to-right (yaw) and up-and-down (pitch) directions for neutral expressions. A second set of 3,610 images per individual covered viewpoints in 5° increments from −45° to 45° for head movements and different facial expressions, forming the targets. Pair-wise comparisons using ArcFace, a state-of-the-art face identification algorithm yielded 54,615,690 dissimilarity scores. Results indicate that minor head deviations in probes have minimal impact. However, the performance diminished as targets deviated from the frontal position. Right-to-left movements were less influential than up and down, with downward pitch showing less impact than upward movements. The lowest accuracy was for upward pitch at 45°. Dissimilarity scores were consistently higher for males than for females across all studied factors. The performance particularly diverged in upward movements, starting at 15°. Among tested facial expressions, happiness and contempt performed best, while disgust exhibited the lowest AUC values.</p></div>","PeriodicalId":49565,"journal":{"name":"Science & Justice","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Head poses and grimaces: Challenges for automated face identification algorithms?\",\"authors\":\"Petra Urbanova ,&nbsp;Tomas Goldmann ,&nbsp;Dominik Cerny ,&nbsp;Martin Drahansky\",\"doi\":\"10.1016/j.scijus.2024.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In today’s biometric and commercial settings, state-of-the-art image processing relies solely on artificial intelligence and machine learning which provides a high level of accuracy. However, these principles are deeply rooted in abstract, complex “black-box systems”. When applied to forensic image identification, concerns about transparency and accountability emerge. This study explores the impact of two challenging factors in automated facial identification: facial expressions and head poses. The sample comprised 3D faces with nine prototype expressions, collected from 41 participants (13 males, 28 females) of European descent aged 19.96 to 50.89 years. Pre-processing involved converting 3D models to 2D color images (256 × 256 px). Probes included a set of 9 images per individual with head poses varying by 5° in both left-to-right (yaw) and up-and-down (pitch) directions for neutral expressions. A second set of 3,610 images per individual covered viewpoints in 5° increments from −45° to 45° for head movements and different facial expressions, forming the targets. Pair-wise comparisons using ArcFace, a state-of-the-art face identification algorithm yielded 54,615,690 dissimilarity scores. Results indicate that minor head deviations in probes have minimal impact. However, the performance diminished as targets deviated from the frontal position. Right-to-left movements were less influential than up and down, with downward pitch showing less impact than upward movements. The lowest accuracy was for upward pitch at 45°. Dissimilarity scores were consistently higher for males than for females across all studied factors. The performance particularly diverged in upward movements, starting at 15°. Among tested facial expressions, happiness and contempt performed best, while disgust exhibited the lowest AUC values.</p></div>\",\"PeriodicalId\":49565,\"journal\":{\"name\":\"Science & Justice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science & Justice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1355030624000522\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Justice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355030624000522","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

摘要

在当今的生物识别和商业环境中,最先进的图像处理技术完全依赖于人工智能和机器学习,从而提供高水平的准确性。然而,这些原理深深植根于抽象、复杂的 "黑盒系统"。当应用于法医图像识别时,就会出现对透明度和问责制的担忧。本研究探讨了两个具有挑战性的因素对自动面部识别的影响:面部表情和头部姿势。样本包括带有九种原型表情的三维人脸,收集自 41 名参与者(13 名男性,28 名女性),他们都是欧洲人后裔,年龄在 19.96 岁到 50.89 岁之间。预处理包括将三维模型转换为二维彩色图像(256 × 256 px)。探针包括一组每个人 9 张的图像,中性表情的头部姿势在左右(偏航)和上下(俯仰)两个方向上变化 5°。第二组每个人 3,610 张图像,视角从 -45° 到 45°,增量为 5°,用于头部运动和不同的面部表情,形成目标。使用最先进的人脸识别算法 ArcFace 进行配对比较,得出了 54,615,690 个差异分数。结果表明,探针中轻微的头部偏差影响极小。但是,当目标偏离正面位置时,性能就会下降。从右向左的移动比从上向下的移动影响要小,从下向上的移动比从上向下的移动影响要小。准确率最低的是 45° 时的向上俯仰。在所有研究因素中,男性的差异得分始终高于女性。从 15°开始,向上运动的表现尤其不同。在测试的面部表情中,快乐和蔑视的表现最好,而厌恶的 AUC 值最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Head poses and grimaces: Challenges for automated face identification algorithms?

In today’s biometric and commercial settings, state-of-the-art image processing relies solely on artificial intelligence and machine learning which provides a high level of accuracy. However, these principles are deeply rooted in abstract, complex “black-box systems”. When applied to forensic image identification, concerns about transparency and accountability emerge. This study explores the impact of two challenging factors in automated facial identification: facial expressions and head poses. The sample comprised 3D faces with nine prototype expressions, collected from 41 participants (13 males, 28 females) of European descent aged 19.96 to 50.89 years. Pre-processing involved converting 3D models to 2D color images (256 × 256 px). Probes included a set of 9 images per individual with head poses varying by 5° in both left-to-right (yaw) and up-and-down (pitch) directions for neutral expressions. A second set of 3,610 images per individual covered viewpoints in 5° increments from −45° to 45° for head movements and different facial expressions, forming the targets. Pair-wise comparisons using ArcFace, a state-of-the-art face identification algorithm yielded 54,615,690 dissimilarity scores. Results indicate that minor head deviations in probes have minimal impact. However, the performance diminished as targets deviated from the frontal position. Right-to-left movements were less influential than up and down, with downward pitch showing less impact than upward movements. The lowest accuracy was for upward pitch at 45°. Dissimilarity scores were consistently higher for males than for females across all studied factors. The performance particularly diverged in upward movements, starting at 15°. Among tested facial expressions, happiness and contempt performed best, while disgust exhibited the lowest AUC values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science & Justice
Science & Justice 医学-病理学
CiteScore
4.20
自引率
15.80%
发文量
98
审稿时长
81 days
期刊介绍: Science & Justice provides a forum to promote communication and publication of original articles, reviews and correspondence on subjects that spark debates within the Forensic Science Community and the criminal justice sector. The journal provides a medium whereby all aspects of applying science to legal proceedings can be debated and progressed. Science & Justice is published six times a year, and will be of interest primarily to practising forensic scientists and their colleagues in related fields. It is chiefly concerned with the publication of formal scientific papers, in keeping with its international learned status, but will not accept any article describing experimentation on animals which does not meet strict ethical standards. Promote communication and informed debate within the Forensic Science Community and the criminal justice sector. To promote the publication of learned and original research findings from all areas of the forensic sciences and by so doing to advance the profession. To promote the publication of case based material by way of case reviews. To promote the publication of conference proceedings which are of interest to the forensic science community. To provide a medium whereby all aspects of applying science to legal proceedings can be debated and progressed. To appeal to all those with an interest in the forensic sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信