减少后脉冲和暗计数效应的新量子密钥分发协议

Q3 Physics and Astronomy
Mahdi Rahmanpour, Alireza Erfanian, Ahmad Afifi, Mahdi Khaje, Mohammad Hossein Fahimifar
{"title":"减少后脉冲和暗计数效应的新量子密钥分发协议","authors":"Mahdi Rahmanpour,&nbsp;Alireza Erfanian,&nbsp;Ahmad Afifi,&nbsp;Mahdi Khaje,&nbsp;Mohammad Hossein Fahimifar","doi":"10.1016/j.rio.2024.100718","DOIUrl":null,"url":null,"abstract":"<div><p>The most important goal of quantum communication is to distribute the encryption key between the transmitter and the receiver. The optimal situation in Quantum Key Distribution (QKD) between transmitter and receiver is to increase the key distribution rate per second, increase the transmission distance, and reduce the error in key distribution. Several protocols used for QKD. The most important of QKD protocols is the BB84. One of the challenges leading to errors in quantum protocols is generating error pulses in single-photon detectors. These pulses caused by the inherent effects of quantum devices. They can cause wrong detection in the receiver. Many measures have been taken in the design and construction of single-photon detectors to reduce this error pulses, but it is not possible to eliminate all of them. Afterpulse and dark counts are two types of unwanted pulses that occur with single-photon detectors. In this paper, a new QKD protocol is proposed. It is an upgrade of the BB84 protocol and can reduce the effects of unwanted pulses such as afterpulse and dark counts in QKD avalanche detectors.</p></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666950124001159/pdfft?md5=2af2b22cbc800fc0a6a3a73640493dca&pid=1-s2.0-S2666950124001159-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A new quantum key distribution protocol to reduce afterpulse and dark counts effects\",\"authors\":\"Mahdi Rahmanpour,&nbsp;Alireza Erfanian,&nbsp;Ahmad Afifi,&nbsp;Mahdi Khaje,&nbsp;Mohammad Hossein Fahimifar\",\"doi\":\"10.1016/j.rio.2024.100718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The most important goal of quantum communication is to distribute the encryption key between the transmitter and the receiver. The optimal situation in Quantum Key Distribution (QKD) between transmitter and receiver is to increase the key distribution rate per second, increase the transmission distance, and reduce the error in key distribution. Several protocols used for QKD. The most important of QKD protocols is the BB84. One of the challenges leading to errors in quantum protocols is generating error pulses in single-photon detectors. These pulses caused by the inherent effects of quantum devices. They can cause wrong detection in the receiver. Many measures have been taken in the design and construction of single-photon detectors to reduce this error pulses, but it is not possible to eliminate all of them. Afterpulse and dark counts are two types of unwanted pulses that occur with single-photon detectors. In this paper, a new QKD protocol is proposed. It is an upgrade of the BB84 protocol and can reduce the effects of unwanted pulses such as afterpulse and dark counts in QKD avalanche detectors.</p></div>\",\"PeriodicalId\":21151,\"journal\":{\"name\":\"Results in Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666950124001159/pdfft?md5=2af2b22cbc800fc0a6a3a73640493dca&pid=1-s2.0-S2666950124001159-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666950124001159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950124001159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

量子通信最重要的目标是在发射器和接收器之间分发加密密钥。发送器和接收器之间的量子密钥分发(QKD)的最佳情况是提高每秒的密钥分发率、增加传输距离并减少密钥分发中的误差。用于 QKD 的协议有多种。QKD 协议中最重要的是 BB84。量子协议中导致错误的挑战之一是在单光子探测器中产生错误脉冲。这些脉冲由量子设备的固有效应引起。它们会导致接收器的错误检测。在设计和制造单光子探测器时,我们采取了许多措施来减少这种误差脉冲,但不可能消除所有误差脉冲。后脉冲和暗计数是单光子探测器出现的两类无用脉冲。本文提出了一种新的 QKD 协议。它是 BB84 协议的升级版,可以减少 QKD 雪崩探测器中余脉和暗计数等无用脉冲的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new quantum key distribution protocol to reduce afterpulse and dark counts effects

The most important goal of quantum communication is to distribute the encryption key between the transmitter and the receiver. The optimal situation in Quantum Key Distribution (QKD) between transmitter and receiver is to increase the key distribution rate per second, increase the transmission distance, and reduce the error in key distribution. Several protocols used for QKD. The most important of QKD protocols is the BB84. One of the challenges leading to errors in quantum protocols is generating error pulses in single-photon detectors. These pulses caused by the inherent effects of quantum devices. They can cause wrong detection in the receiver. Many measures have been taken in the design and construction of single-photon detectors to reduce this error pulses, but it is not possible to eliminate all of them. Afterpulse and dark counts are two types of unwanted pulses that occur with single-photon detectors. In this paper, a new QKD protocol is proposed. It is an upgrade of the BB84 protocol and can reduce the effects of unwanted pulses such as afterpulse and dark counts in QKD avalanche detectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Optics
Results in Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
2.50
自引率
0.00%
发文量
115
审稿时长
71 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信