Mahdi Rahmanpour, Alireza Erfanian, Ahmad Afifi, Mahdi Khaje, Mohammad Hossein Fahimifar
{"title":"减少后脉冲和暗计数效应的新量子密钥分发协议","authors":"Mahdi Rahmanpour, Alireza Erfanian, Ahmad Afifi, Mahdi Khaje, Mohammad Hossein Fahimifar","doi":"10.1016/j.rio.2024.100718","DOIUrl":null,"url":null,"abstract":"<div><p>The most important goal of quantum communication is to distribute the encryption key between the transmitter and the receiver. The optimal situation in Quantum Key Distribution (QKD) between transmitter and receiver is to increase the key distribution rate per second, increase the transmission distance, and reduce the error in key distribution. Several protocols used for QKD. The most important of QKD protocols is the BB84. One of the challenges leading to errors in quantum protocols is generating error pulses in single-photon detectors. These pulses caused by the inherent effects of quantum devices. They can cause wrong detection in the receiver. Many measures have been taken in the design and construction of single-photon detectors to reduce this error pulses, but it is not possible to eliminate all of them. Afterpulse and dark counts are two types of unwanted pulses that occur with single-photon detectors. In this paper, a new QKD protocol is proposed. It is an upgrade of the BB84 protocol and can reduce the effects of unwanted pulses such as afterpulse and dark counts in QKD avalanche detectors.</p></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":"16 ","pages":"Article 100718"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666950124001159/pdfft?md5=2af2b22cbc800fc0a6a3a73640493dca&pid=1-s2.0-S2666950124001159-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A new quantum key distribution protocol to reduce afterpulse and dark counts effects\",\"authors\":\"Mahdi Rahmanpour, Alireza Erfanian, Ahmad Afifi, Mahdi Khaje, Mohammad Hossein Fahimifar\",\"doi\":\"10.1016/j.rio.2024.100718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The most important goal of quantum communication is to distribute the encryption key between the transmitter and the receiver. The optimal situation in Quantum Key Distribution (QKD) between transmitter and receiver is to increase the key distribution rate per second, increase the transmission distance, and reduce the error in key distribution. Several protocols used for QKD. The most important of QKD protocols is the BB84. One of the challenges leading to errors in quantum protocols is generating error pulses in single-photon detectors. These pulses caused by the inherent effects of quantum devices. They can cause wrong detection in the receiver. Many measures have been taken in the design and construction of single-photon detectors to reduce this error pulses, but it is not possible to eliminate all of them. Afterpulse and dark counts are two types of unwanted pulses that occur with single-photon detectors. In this paper, a new QKD protocol is proposed. It is an upgrade of the BB84 protocol and can reduce the effects of unwanted pulses such as afterpulse and dark counts in QKD avalanche detectors.</p></div>\",\"PeriodicalId\":21151,\"journal\":{\"name\":\"Results in Optics\",\"volume\":\"16 \",\"pages\":\"Article 100718\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666950124001159/pdfft?md5=2af2b22cbc800fc0a6a3a73640493dca&pid=1-s2.0-S2666950124001159-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666950124001159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950124001159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
A new quantum key distribution protocol to reduce afterpulse and dark counts effects
The most important goal of quantum communication is to distribute the encryption key between the transmitter and the receiver. The optimal situation in Quantum Key Distribution (QKD) between transmitter and receiver is to increase the key distribution rate per second, increase the transmission distance, and reduce the error in key distribution. Several protocols used for QKD. The most important of QKD protocols is the BB84. One of the challenges leading to errors in quantum protocols is generating error pulses in single-photon detectors. These pulses caused by the inherent effects of quantum devices. They can cause wrong detection in the receiver. Many measures have been taken in the design and construction of single-photon detectors to reduce this error pulses, but it is not possible to eliminate all of them. Afterpulse and dark counts are two types of unwanted pulses that occur with single-photon detectors. In this paper, a new QKD protocol is proposed. It is an upgrade of the BB84 protocol and can reduce the effects of unwanted pulses such as afterpulse and dark counts in QKD avalanche detectors.