带有铁磁性 CoFe2O4 缓冲层的应变不敏感铁磁性 SrRuO3 薄膜

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jung Ehy Hong , Yeong Uk Choi , Hyun Soo Ahn , Bhubnesh Lama , Jong Hun Kim , Tula R. Paudel , Jung-Woo Lee , Jong Hoon Jung
{"title":"带有铁磁性 CoFe2O4 缓冲层的应变不敏感铁磁性 SrRuO3 薄膜","authors":"Jung Ehy Hong ,&nbsp;Yeong Uk Choi ,&nbsp;Hyun Soo Ahn ,&nbsp;Bhubnesh Lama ,&nbsp;Jong Hun Kim ,&nbsp;Tula R. Paudel ,&nbsp;Jung-Woo Lee ,&nbsp;Jong Hoon Jung","doi":"10.1016/j.cap.2024.06.012","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible electronics, such as wearable devices and biosensors, require materials that maintain their properties under mechanical stress. A recent study addresses this by focusing on SrRuO<sub>3</sub> (SRO) thin films, which typically suffer reduced coercivity under strain. Herein, we introduce a novel approach by using CoFe<sub>2</sub>O<sub>4</sub> (CFO) as a buffer layer in SRO/CFO/F-mica heterostructures to address this issue. When subjected to a strain of up to ±0.553 %, these heterostructures displayed a mere 11 % variation in saturation magnetic moment and coercive field, significantly outperforming SRO/BaTiO<sub>3</sub> configurations, which showed a 95 % reduction in coercivity at only −0.3 % strain. This result demonstrates the effectiveness of the CFO layer in stabilizing the magnetic properties of SRO films against external mechanical deformations. These findings mark a significant advancement in the development of mechanically robust thin films for complex oxide heterostructures in flexible device applications.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"66 ","pages":"Pages 24-29"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-insensitive ferromagnetic SrRuO3 thin films with ferrimagnetic CoFe2O4 buffer layer\",\"authors\":\"Jung Ehy Hong ,&nbsp;Yeong Uk Choi ,&nbsp;Hyun Soo Ahn ,&nbsp;Bhubnesh Lama ,&nbsp;Jong Hun Kim ,&nbsp;Tula R. Paudel ,&nbsp;Jung-Woo Lee ,&nbsp;Jong Hoon Jung\",\"doi\":\"10.1016/j.cap.2024.06.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flexible electronics, such as wearable devices and biosensors, require materials that maintain their properties under mechanical stress. A recent study addresses this by focusing on SrRuO<sub>3</sub> (SRO) thin films, which typically suffer reduced coercivity under strain. Herein, we introduce a novel approach by using CoFe<sub>2</sub>O<sub>4</sub> (CFO) as a buffer layer in SRO/CFO/F-mica heterostructures to address this issue. When subjected to a strain of up to ±0.553 %, these heterostructures displayed a mere 11 % variation in saturation magnetic moment and coercive field, significantly outperforming SRO/BaTiO<sub>3</sub> configurations, which showed a 95 % reduction in coercivity at only −0.3 % strain. This result demonstrates the effectiveness of the CFO layer in stabilizing the magnetic properties of SRO films against external mechanical deformations. These findings mark a significant advancement in the development of mechanically robust thin films for complex oxide heterostructures in flexible device applications.</p></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"66 \",\"pages\":\"Pages 24-29\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173924001366\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924001366","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

柔性电子器件(如可穿戴设备和生物传感器)需要能在机械应力下保持其特性的材料。最近的一项研究通过关注SrRuO3(SRO)薄膜解决了这一问题,这种薄膜在应变下通常会降低矫顽力。在这里,我们介绍了一种新方法,即在 SRO/CFO/F 云母异质结构中使用 CoFe2O4(CFO)作为缓冲层来解决这一问题。当受到高达 ±0.553 % 的应变时,这些异质结构的饱和磁矩和矫顽力场仅有 11 % 的变化,明显优于 SRO/BaTiO3 配置,后者仅在应变为 -0.3 % 时矫顽力就降低了 95 %。这一结果表明了 CFO 层在稳定 SRO 薄膜的磁性能以抵御外部机械变形方面的有效性。这些发现标志着在柔性器件应用中开发具有机械稳定性的复杂氧化物异质结构薄膜方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strain-insensitive ferromagnetic SrRuO3 thin films with ferrimagnetic CoFe2O4 buffer layer

Strain-insensitive ferromagnetic SrRuO3 thin films with ferrimagnetic CoFe2O4 buffer layer

Flexible electronics, such as wearable devices and biosensors, require materials that maintain their properties under mechanical stress. A recent study addresses this by focusing on SrRuO3 (SRO) thin films, which typically suffer reduced coercivity under strain. Herein, we introduce a novel approach by using CoFe2O4 (CFO) as a buffer layer in SRO/CFO/F-mica heterostructures to address this issue. When subjected to a strain of up to ±0.553 %, these heterostructures displayed a mere 11 % variation in saturation magnetic moment and coercive field, significantly outperforming SRO/BaTiO3 configurations, which showed a 95 % reduction in coercivity at only −0.3 % strain. This result demonstrates the effectiveness of the CFO layer in stabilizing the magnetic properties of SRO films against external mechanical deformations. These findings mark a significant advancement in the development of mechanically robust thin films for complex oxide heterostructures in flexible device applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信