平行面超定非局部问题的定量稳定性及稳定性指数研究

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Serena Dipierro, Giorgio Poggesi, Jack Thompson, Enrico Valdinoci
{"title":"平行面超定非局部问题的定量稳定性及稳定性指数研究","authors":"Serena Dipierro,&nbsp;Giorgio Poggesi,&nbsp;Jack Thompson,&nbsp;Enrico Valdinoci","doi":"10.1016/j.matpur.2024.06.011","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we analyze the stability of the parallel surface problem for semilinear equations driven by the fractional Laplacian. We prove a quantitative stability result that goes beyond the one previously obtained in <span>[15]</span>.</p><p>Moreover, we discuss in detail several techniques and challenges in obtaining the optimal exponent in this stability result. In particular, this includes an upper bound on the exponent via an explicit computation involving a family of ellipsoids. We also sharply investigate a technique that was proposed in <span>[14]</span> to obtain the optimal stability exponent in the quantitative estimate for the nonlocal Alexandrov's soap bubble theorem, obtaining accurate estimates to be compared with a new, explicit example.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative stability for overdetermined nonlocal problems with parallel surfaces and investigation of the stability exponents\",\"authors\":\"Serena Dipierro,&nbsp;Giorgio Poggesi,&nbsp;Jack Thompson,&nbsp;Enrico Valdinoci\",\"doi\":\"10.1016/j.matpur.2024.06.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we analyze the stability of the parallel surface problem for semilinear equations driven by the fractional Laplacian. We prove a quantitative stability result that goes beyond the one previously obtained in <span>[15]</span>.</p><p>Moreover, we discuss in detail several techniques and challenges in obtaining the optimal exponent in this stability result. In particular, this includes an upper bound on the exponent via an explicit computation involving a family of ellipsoids. We also sharply investigate a technique that was proposed in <span>[14]</span> to obtain the optimal stability exponent in the quantitative estimate for the nonlocal Alexandrov's soap bubble theorem, obtaining accurate estimates to be compared with a new, explicit example.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了分数拉普拉卡驱动的半线性方程平行曲面问题的稳定性。此外,我们还详细讨论了获得该稳定性结果中最优指数的几种技术和挑战。特别是,这包括通过涉及椭球体族的显式计算得出的指数上界。我们还对[14]中提出的一种技术进行了深入研究,以获得非局部亚历山德罗夫肥皂泡定理定量估计中的最优稳定指数,从而获得精确的估计值,并与一个新的显式实例进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative stability for overdetermined nonlocal problems with parallel surfaces and investigation of the stability exponents

In this article, we analyze the stability of the parallel surface problem for semilinear equations driven by the fractional Laplacian. We prove a quantitative stability result that goes beyond the one previously obtained in [15].

Moreover, we discuss in detail several techniques and challenges in obtaining the optimal exponent in this stability result. In particular, this includes an upper bound on the exponent via an explicit computation involving a family of ellipsoids. We also sharply investigate a technique that was proposed in [14] to obtain the optimal stability exponent in the quantitative estimate for the nonlocal Alexandrov's soap bubble theorem, obtaining accurate estimates to be compared with a new, explicit example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信